Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QIAO Hongxia, SU Rui, LI Qiong, LI Aoyang, SUN Xin. Research on Variation Law of Durability of Recycled Aggregate Concrete Based on Wiener Process Life Prediction[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 167-173,139. doi: 10.13204/j.gyjzG21110802
Citation: QIAO Hongxia, SU Rui, LI Qiong, LI Aoyang, SUN Xin. Research on Variation Law of Durability of Recycled Aggregate Concrete Based on Wiener Process Life Prediction[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 167-173,139. doi: 10.13204/j.gyjzG21110802

Research on Variation Law of Durability of Recycled Aggregate Concrete Based on Wiener Process Life Prediction

doi: 10.13204/j.gyjzG21110802
  • Received Date: 2021-11-08
    Available Online: 2022-09-05
  • In order to study the degradation process of durability of recycled aggregate concrete (RAC) under sulfate dry-wet cycle and freeze-thaw cycle, the replacement rate of recycled aggregate (0, 30%, 50%, 70%), fly ash content (10%, 20%, 30%), silica fume content (5%, 8%, 12%), and single and mixed methods were selected as influencing factors to study the influence law of RAC durability. The mass loss rate and relative dynamic elastic modulus were used to describe the mechanism of the above influencing factors on the degradation of RAC durability. Based on the relative dynamic elastic modulus of RAC in freeze-thaw cycle test, the reliability change of RAC was analyzed by using a single Wiener random process to predict the service life of RAC under freeze-thaw environment. The research showed that under the condition of freeze-thaw cycle, compared with the reference parts without recycled aggregate, fly ash and silica fume, the mass loss rate of RAC decreased gradually with the increase of recycled aggregate content. With the increase of fly ash content and silica fume content, the mass loss rate of RAC first decreased and then increased, and the relative dynamic elastic modulus of RAC increased first and then decreased. When the fixed fly ash content was 20% and silica fume content was 8%, the mass loss rate and relative dynamic elastic modulus of RAC decreased gradually with the increase of recycled coarse aggregate content. Under the condition of sulfate dry-wet cycle, the relative dynamic elastic modulus of RAC decreased gradually with the increase of recycled aggregate content. According to the analysis of the model established by the unitary Wiener method, it could be seen that the reliability of the RAC model prepared by replacing natural aggregate with recycled aggregate at 30% substitution rate with 20% fly ash and 8% silica fume had the longest variation time.
  • [1]
    JIN L, YU H, WANG Z, et al. Effect of crack and damaged zone on chloride penetration in recycled aggregate concrete:a seven-phase mesoscale numerical method[J]. Construction and Building Materials, 2021, 291(7):123383-123394.
    [2]
    WANG Y, TANG J, AN S, et al. Optimization of mechanical properties of recycled aggregate concrete based on queuing scoring method[J]. IOP Conference Series:Earth and Environmental Science, 2021, 768(1):012078-012081.
    [3]
    SHANG X, YANG J, WANG S, et al. Fractal analysis of 2D and 3D mesocracks in recycled aggregate concrete using X-ray computed tomography images[J]. Journal of Cleaner Production, 2021, 304:127083-127095.
    [4]
    BAMIGBOYE G O, TARVERDI K, WALI E S, et al. Effects of dissimilar curing systems on the strength and durability of recycled PET-modified concrete[J]. Silicon, 2021,898(20):1-13.
    [5]
    成高立,李晓光. 再生骨料构成对混凝土性能的影响[J]. 硅酸盐通报, 2018, 37(3):1103-1108

    ,1113.
    [6]
    李滢,代大虎,余红发. 再生细骨料对再生混凝土力学性能及耐久性能的影响研究[J]. 混凝土, 2016(12):76-78.
    [7]
    权伟博. 再生骨料混凝土性能研究[J]. 四川建材, 2021, 47(5):243-244.
    [8]
    肖建庄,林壮斌,朱军. 再生骨料级配对混凝土抗压强度的影响[J]. 四川大学学报(工程科学版), 2014, 46(4):154-160.
    [9]
    彭勇军. 再生混凝土性能影响因素分析及耐久性研究[J]. 建筑结构, 2021, 51(9):74-78

    ,62.
    [10]
    邓祥辉,高晓悦,王睿,等. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021,35(16):16028-16034.
    [11]
    YEHIA S, HELAL K, ABUSHARKH A, et al. Strength and durability evaluation of recycled aggregate concrete[J]. International Journal of Concrete Structures and Materials, 2015, 9(2):219-239.
    [12]
    冯琦,王宇斌. 粉煤灰再生混凝土在干湿循环-抗硫酸盐侵蚀耦合条件下的耐久性研究[J]. 混凝土, 2021(5):42-45,50.
    [13]
    尹兴伟,吴相豪. 矿物掺合料对再生混凝土抗冻性影响的试验研究[J]. 混凝土, 2012(8):90-93.
    [14]
    闫宏生. 再生混凝土的硫酸盐腐蚀试验研究[J]. 混凝土, 2013(5):13-15.
    [15]
    乔宏霞,冯琼,朱彬荣,等. 西部地区混凝土基于Weibull分布的寿命预测研究[J]. 应用基础与工程科学学报, 2020, 28(4):993-1005.
    [16]
    路承功,乔宏霞,魏智强,等. 盐渍土地区混凝土加速损伤劣化机理及基于Wiener过程可靠性分析[J]. 中国矿业大学学报, 2021, 50(2):265-272

    ,288.
    [17]
    中华人民共和国质量监督检验检疫总局. 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009[S].北京:中国建筑工业出版社,2019.
    [18]
    陈自豪,元成方. 再生骨料混凝土抗冻性研究进展[J]. 混凝土, 2019(5):20-23,27.
    [19]
    乔宏霞,彭宽,陈克凡,等. 干湿循环条件下陶瓷粉再生混凝土抗硫酸盐侵蚀性能及可靠性分析[J]. 应用基础与工程科学学报, 2021, 29(3):752-760.
    [20]
    白花蕾,樊耀虎,李滢,等. 再生微粉和矿物掺合料对混凝土抗碳化性能的影响研究[J]. 硅酸盐通报, 2020, 287(8):273-278.
    [21]
    孙华银,李滟浩,王燕,等. 再生混凝土冻融循环试验研究综述[J]. 科技创新与应用, 2020(22):52-53.
    [22]
    王晨霞,郭磊,曹芙波. 盐碱与冻融耦合作用下再生混凝土耐久性试验研究[J]. 硅酸盐通报, 2018, 37(1):10-16.
    [23]
    白亚东,黄志强,付旭,等. 再生混凝土抗冻性影响因素与防冻措施研究综述[J]. 混凝土, 2020(6):98-101,105.
    [24]
    肖建庄,雷斌. 再生混凝土碳化模型与结构耐久性设计[J]. 建筑科学与工程学报, 2008(3):66-72.
    [25]
    肖建庄,林壮斌,朱军. 再生骨料级配对混凝土抗压强度的影响[J]. 四川大学学报(工程科学版), 2014, 46(4):154-160.
    [26]
    应敬伟,肖建庄. 再生骨料取代率对再生混凝土耐久性的影响[J]. 建筑科学与工程学报, 2012(1):56-62.
  • Relative Articles

    [1]ZHONG Zhiwu. Mechanical Properties of Fly Ash Concrete After Creep and Being Subjected to Different Stresses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 152-157,132. doi: 10.13204/j.gyjzG21112105
    [2]Li Xiaofen Liu Lixin Zhang Huipeng, . EXPERIMENTAL STUDY OF FATIGUE BEHAVIOR OF THE PRESTRESSED CONCRETE BEAMS WITH PRETENSIONED BENT-UP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 95-101. doi: 10.13204/j.gyjz201507020
    [3]Zhang Peng, Zhong Qingyu, Deng Yu, Liu Wenbing, Mou Xiaohui. EXPERIMENTAL AND THEORETICAL RESEARCH ON CRACKS OF CFRP-PCPS COMPOSITE REINFORCED CONCRETE CONTINUOUS BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 7-11. doi: 10.13204/j.gyjz201506002
    [4]Wang Xiang, Zhang Feilin, Xiao Nan. LESSONS OF REMOVING FORMWORK AHEAD OF TIME UNDER THE CONSTRUCTION OF POST-CAST STRIP IN RC STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 159-163. doi: 10.13204/j.gyjz201302032
    [5]Hu Jinxu, Zhu Xiangjun. ANALYSIS AND CFRP TREATMENT OF THERMAL CRACKS OF THE OVERGROUND REINFORCED CONCRETE POND[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 130-133. doi: 10.13204/j.gyjz201108031
    [6]Zhang Xinbin, Simon Chen, Cheng Daye, Zhang Zhong. CRACK CONTROL OF MASS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 1-4. doi: 10.13204/j.gyjz201001001
    [7]Ni Guowei, Jiang Dengling, Chen Juannong, Qi Jiarui. BENDING TEST AND CRACK CALCULATION OF BI-STEEL CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 59-64. doi: 10.13204/j.gyjz200906015
    [8]Wu Jing, Meng Shaoping, Wang Cui. INTERNAL FORCE REDISTRIBUTION AND CRACK CONTROL OF PRESTRESSED CONCRETE FLAT-FLOORS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 14-17. doi: 10.13204/j.gyjz200912004
    [9]Zhou Tong, Wu Xiaogui, Qiu Xihong. CONTROL AND MONITORING OF TEMPERATURE CRACKS OF BASEMENT WALL FOR SHANGHAI SCIENCE MUSEUM[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 81-84. doi: 10.13204/j.gyjz200909017
    [10]Zhou Wei, Zheng Wenzhong. EVALUATION AND RETROFIT OF CONSTRUCTION CRACK ON PRESTRESSED CONCRETE FRAME BEAMS FOR A LIBRARY[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 112-115. doi: 10.13204/j.gyjz200809031
    [11]Liu Wei, Dong Bixin, Li Weiwen, Xing Feng. THE STUDY ON THERMAL STRESS AND TEMPERATURE CRACK OF UNDERGROUND MASS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 79-81,130. doi: 10.13204/j.gyjz200807019
    [12]Li Chengzhong, Ji Weibing, Wu Jing. ACTUALIZATION AND VERIFICATION OF NO-JOINT DEISNG OF AN OVER-LONG TALL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 109-113. doi: 10.13204/j.gyjz200808029
    [13]Chen Junyi, Zou Daoqin, Gan Gang. ANALYSIS ON TEMPERATURE STRESS OF SUPER-LONG FRAME STRUCTURE WITH BEAM TEMPERATURE LAG TAKEN INTO ACCOUNT[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 39-43. doi: 10.13204/j.gyjz200707013
    [14]Wang Chun-wu. DISCUSSION ON DESIGN PROBLEMS OF OVER-LONG CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 53-56. doi: 10.13204/j.gyjz200711014
    [15]Wu Jing, Wu Jun-yan, Meng Shao-ping. RESEARCH ON INDIRECT STRESS AND CRACK CONTROL OF CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 13-15,98. doi: 10.13204/j.gyjz200605004
    [16]Meng Shao-ping, Han Chong-qing, Wu Jing. RESEARCH ON BASIC PROBLEMS AND ENGINEERING PRACTICES ABOUT DESIGN OF CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 1-4,8. doi: 10.13204/j.gyjz200605001
    [17]Zhang Yu-ming, Wu Jing, Meng Shao-ping. STUDY ON CONTROL OF CRACK IN PRESTRESSED CONCRETE STRUCTURES WITH LARGE LONGITUDINAL LENGTH[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 8-12. doi: 10.13204/j.gyjz200605003
    [18]Zhang Yong-sheng, Li Yan-ying, Meng Shao-ping. RESEARCH ON TEMPERATURE AND SHRINKAGE CRACK OF SUPER-LONG FRAME BEAM-SLAB STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 50-53,76. doi: 10.13204/j.gyjz200606016
    [19]Li Fumin, Meng Shaoping. CALCULATING OF TEMPERATURE AND SHRINKAGE REINFORCEMENTS OF OVERLONG REINFORCED CONCRETE BEAM-SLAB STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 34-38. doi: 10.13204/j.gyjz200507011
    [20]Song Wei, Yuan Yong. PRACTICAL ANALYSIS OF FLEXURAL STIFFNESS OF PRESTRESS CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 30-33. doi: 10.13204/j.gyjz200411009
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.2 %FULLTEXT: 26.2 %META: 73.8 %META: 73.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %其他: 0.8 %其他: 0.8 %China: 1.0 %China: 1.0 %上海: 1.0 %上海: 1.0 %东莞: 4.3 %东莞: 4.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.3 %保定: 0.3 %信阳: 0.8 %信阳: 0.8 %六盘水: 0.3 %六盘水: 0.3 %兰州: 0.8 %兰州: 0.8 %北京: 3.6 %北京: 3.6 %南京: 1.3 %南京: 1.3 %南宁: 1.5 %南宁: 1.5 %南昌: 0.3 %南昌: 0.3 %南阳: 0.5 %南阳: 0.5 %合肥: 1.0 %合肥: 1.0 %吉林: 0.3 %吉林: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 1.3 %天津: 1.3 %太原: 0.5 %太原: 0.5 %宁波: 0.3 %宁波: 0.3 %常州: 1.0 %常州: 1.0 %常德: 0.3 %常德: 0.3 %平顶山: 0.3 %平顶山: 0.3 %广州: 1.0 %广州: 1.0 %张家口: 1.3 %张家口: 1.3 %德阳: 0.5 %德阳: 0.5 %扬州: 0.8 %扬州: 0.8 %新乡: 1.5 %新乡: 1.5 %无锡: 0.3 %无锡: 0.3 %昆明: 3.1 %昆明: 3.1 %晋中: 1.5 %晋中: 1.5 %晋城: 0.3 %晋城: 0.3 %朝阳: 1.0 %朝阳: 1.0 %杭州: 1.5 %杭州: 1.5 %柳州: 0.3 %柳州: 0.3 %格兰特县: 0.5 %格兰特县: 0.5 %武汉: 0.3 %武汉: 0.3 %洛阳: 0.5 %洛阳: 0.5 %济南: 1.8 %济南: 1.8 %深圳: 0.5 %深圳: 0.5 %湘潭: 0.3 %湘潭: 0.3 %漯河: 0.5 %漯河: 0.5 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.8 %福州: 0.8 %绍兴: 0.5 %绍兴: 0.5 %芒廷维尤: 3.3 %芒廷维尤: 3.3 %芝加哥: 3.6 %芝加哥: 3.6 %苏州: 0.8 %苏州: 0.8 %西宁: 24.5 %西宁: 24.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.8 %贵阳: 0.8 %运城: 2.8 %运城: 2.8 %连云港: 0.3 %连云港: 0.3 %邯郸: 0.3 %邯郸: 0.3 %邵阳: 0.3 %邵阳: 0.3 %郑州: 5.4 %郑州: 5.4 %重庆: 0.5 %重庆: 0.5 %铁岭: 0.3 %铁岭: 0.3 %锦州: 0.8 %锦州: 0.8 %镇江: 0.8 %镇江: 0.8 %长春: 0.5 %长春: 0.5 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阜新: 0.3 %阜新: 0.3 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.8 %青岛: 0.8 %黄石: 0.5 %黄石: 0.5 %其他其他China上海东莞乌鲁木齐保定信阳六盘水兰州北京南京南宁南昌南阳合肥吉林嘉兴天津太原宁波常州常德平顶山广州张家口德阳扬州新乡无锡昆明晋中晋城朝阳杭州柳州格兰特县武汉洛阳济南深圳湘潭漯河石家庄福州绍兴芒廷维尤芝加哥苏州西宁西安贵阳运城连云港邯郸邵阳郑州重庆铁岭锦州镇江长春长沙长治阜新阳泉青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return