Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Yanru, SHI Lei, BAI Jianwen, WANG Zhihui. Experimental Research on Mechanical Properties of Concrete After Carbonization at High Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 139-143. doi: 10.13204/j.gyjzG20090301
Citation: HU Haodong, GUO Qingshi, WU Jiujiang. Research Status of Lattice-Shaped Diaphragm Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 183-190. doi: 10.13204/j.gyjzG21110207

Research Status of Lattice-Shaped Diaphragm Walls

doi: 10.13204/j.gyjzG21110207
  • Received Date: 2021-11-02
    Available Online: 2022-09-05
  • Since the first application case of the lattice-shaped diaphragm wall in Japanese high-speed rail bridges in 1979, it has attracted great attention from domestic and foreign scholars due to its excellent engineering characteristics. Currently, the lattice-shaped diaphragm wall has been used in large-scale bridge foundations at home and abroad and gradually popularized to the enclosure and anti-seepage structure of water conservancy, hydropower and dock foundation excavation engineering. Based on large amount of literature at home and abroad, the application and research status of lattice-shaped diaphragm walls in the bridge foundation was analyzed. The research progress of tests, theoretical calculations and numerical simulations of lattice-shaped diaphragm walls at home and abroad were focused on. Meanwhile, The relevant summary and analysis were implemented to provide certain guidance for the future application and research of lattice-shaped diaphragm walls in the civil engineering.
  • [1]
    程谦恭.格栅式地下连续墙桥梁基础抗地震液化机理研究[J].学术动态,2014(1):35-44.
    [2]
    许黎明.地下连续墙桥梁基础[J].公路,1995,47(2):35-41.
    [3]
    许黎明.一种新的桥梁基础形式:地下连续墙基础[J].国外桥梁,1995(3):230-234.
    [4]
    丛蔼森,地下连续墙设计施工与应用[M].北京:中国水利水电出版社,2021.
    [5]
    程谦恭,文华,宋章.矩形闭合墙桥梁基础研究现状及发展趋势[J].建筑技术,2009,40(3):198-203.
    [6]
    吴九江,程谦恭,文华.地下连续墙基础在日本的多样化发展[J].工业建筑,2013,43(1):144-149

    ,70.
    [7]
    梅原俊夫,棚村史郎. その他特殊な構造物の設計·施工 連壁剛体基礎[J]. コンクリート工学, 1985, 23(4):35-37.
    [8]
    海野隆哉. 鉄道橋梁基礎の歴史 (特集 橋梁の基礎および下部構造)[J]. 橋梁と基礎, 1999, 33(8):34-39.
    [9]
    海野隆哉,大植英亮. 地下连続壁の井筒设计法と现场水平载荷试验[J]. 土木技术,1980,36(5):48-57.
    [10]
    春原俊英,曾根义雄,中井雅彦. 连壁刚体基础工法の设计施工 (东北新干蝷王子南部工区)[J]. 驘道土木,1984(8):51-58.
    [11]
    中村兵次,向山辰夫,松田一史暮地中連続壁を用いた井筒型基礎の構造特性[G]//土木学会構造工学論文集.1996(42):1221-1228.
    [12]
    小林勝己,平澤光春,浜塚政治等.外周部を地中連壁で囲つ基礎の水平抵抗:に関する模型実験[J].フヅタ技術研究所報,1992(28):67-72.
    [13]
    藤森健史. 箱型状基礎の耐震設計法 (その 1) 設計法と検証実験法,(その 2) 実験結果との比較による検証[C]//日本建築学会大会学術講演梗概集.2004:517-520.
    [14]
    海野隆哉, 菊地敏男. 連壁剛体基礎橋脚のシミュレーション解析について[C]//地震工学研究発表会講演概要.1987:485-488.
    [15]
    岡原美知夫, 高木章次, 茶林一彦. 地中連続壁基礎の支持機構[G]//構造工学論文集.1989(35):131-1307.
    [16]
    菊地敏男, 海野隆哉. 連壁剛体基礎橋脚の地震時挙動と応答変位法の適用性について[G]//土木学会論文集. 1993 (477):63-72.
    [17]
    日本総合土木研究所.地中連統壁基礎工法ハソドブツク(設計編)[M].東京:日本総合土木研究所,1993(平成5年

    ).
    [18]
    大志万和也.地中连続壁の設計[J].橋梁と基礎,1986,20(1):44-48.
    [19]
    吴九江. 软土地基中格栅式地下连续墙桥梁基础竖向承载性状研究[D].成都:西南交通大学,2015.
    [20]
    蔡飛, 芦澤拓八, 佐藤靖彦, 等. 3 次元動的有効応力解析を用いた格子状改良工法·排水工法による液状化対策効果評価[G]//土木学会論文集 A1 (構造·

    ;地震工学). 2017, 73(4):1048-1059.
    [21]
    周建军,饶恩孔,张有光,等. 虎门大桥西锚碇基础施工[C]//中国土木工程学会桥梁及结构工程学会第11届年会论文集. 北京:中国土木工程学会桥梁及结构工程学会,1994.
    [22]
    张有光,关华.虎门大桥西锚碇基础地下围水连续墙的施工技术[J].国外公路,1998(5):49-51.
    [23]
    李涛.铁路桥梁连续墙挖井基础设计方法的试验研究[J].中国铁道科学,1997,18(2):46-53.
    [24]
    孟凡超,陈晓东,程谦恭,等.黄土地区地下连续墙桥梁基础试验研究[J].工程地质学报,2011,19(4):515.
    [25]
    许卓. 湿陷性黄土地基地下连续墙承载能力研究[D].西安:长安大学, 2014.
    [26]
    崔立川,罗林阁,易绍平,等.分体井筒式地连墙锚碇基础承载性能研究[J].公路,2018,63(6):78-84.
    [27]
    广东省建设委员会.地下连续墙结构设计规程:DBJ/T 75-13-95[S].广州:广东省建设委员会,1995.
    [28]
    中华人民共和国交通部.港口工程地下连接墙结构设计与施工规程:JTJ 303-2003[S]. 北京:人民交通出版社,2003.
    [29]
    中华人民共和国交通部.公路桥涵地基与基础设计规范:JTG D63-2007[S].北京:人民交通出版社,2007.
    [30]
    李桂花,周生华,周纪煜,等.地下连续墙垂直承载力试验研究[J].同济大学学报(自然科学版),1993,21(4):575-580.
    [31]
    孙学先,崔文.Q4黄土地基地下连续墙水平承载模型试验研究[J].兰州铁道学院学报,1995,14(3):49-54.
    [32]
    陈晓东,龚维明,孟凡超,等.井筒式地下连续墙基础竖向承载特性试验研究[J].岩土工程学报,2007(11):1665-1669.
    [33]
    宋章,程谦恭,孟凡超,等.水平荷载下黄土地基单片地下连续墙现场试验研究[J].岩土力学,2008(8):2183-2188,2208.
    [34]
    张瑞棋. 陇东黄土地区矩形地下连续墙承载特性模型试验研究[D]. 兰州:兰州交通大学,2012.
    [35]
    霍少磊,龚维明,戴国亮,等.地下连续墙基础竖向承载特性自平衡法试验研究[J].建筑科学,2020,36(11):49-55.
    [36]
    戴国亮,周香琴,刘云忠,等.井筒式地下连续墙水平承载能力模型试验研究[J].岩土力学,2011,32(增刊2):185-189,197.
    [37]
    戴国亮,刘立基,龚维明,等.四室井筒式地下连续墙水平承载试验研究(英文)[J].重庆交通大学学报(自然科学版),2012,31(增刊1):655-660,728.
    [38]
    戴国亮,龚维明,周香琴,等.单室井筒式地下连续墙水平承载力试验与计算方法研究[J].建筑结构学报,2012,33(9):67-73.
    [39]
    吴九江,程谦恭,文华,等.格栅式地下连续墙竖向载荷模型试验研究[J].岩石力学与工程学报,2015,34(12):2580-2592.
    [40]
    吴九江,程谦恭,文华,等.软土地基格栅式地下连续墙与群桩桥梁基础竖向承载性状对比模型试验研究[J].岩土工程学报,2014,36(9):1733-1744.
    [41]
    WU J J, CHENG Q G, WEN H, et al. Comparison on the vertical behavior of lattice shaped diaphragm wall and pile group under similar material quantity in soft soil[J]. KSCE Journal of Civil Engineering, 2015, 19(7):2051-2060.
    [42]
    LI Y, CHENG Q G, ZHANG J L, et al. Seismic behavior of rectangular closed diaphragm walls in gently sloping liquefiable deposit:dynamic centrifuge testing[J]. Journal of Geotechnical and Geo-environmental Engineering, 2019, 145(12).DOI: 10.1061/(ASCE)GT.1943-5606.0002181.
    [43]
    李艳,程谦恭,张建磊,等.倾斜可液化场地中矩形闭合型地下连续墙桥梁基础动力特性研究[J].岩土工程学报,2019,41(5):959-966.
    [44]
    张延杰,李建东,王旭,等.人工制备湿陷性黄土地基地下连续墙浸水试验研究[J].岩土工程学报,2018,40(增刊1):73-80.
    [45]
    左玉柱,徐伟,徐赞云.砂土中格形地下连续墙力学性能离心试验研究[J].岩土工程学报,2010,32(增刊1):473-477.
    [46]
    孙学先,崔文鉴.地下闭合墙基础的计算方法研究[J].兰州铁道学院学报,1991(2):60-69.
    [47]
    孙学先.刚性地下闭合墙基础变位与内力计算方法的研究[J].岩土工程学报,1992(4):45-52.
    [48]
    张贵寿.混凝土地下连续墙结构计算方法及模型研究[J].红水河,2000(1):26-30.
    [49]
    侯永茂.格形地下连续墙竖向承载特性研究[J].岩土工程学报,2012,34(4):701-708.
    [50]
    龚维明,王磊. 地下连续墙基础计算方法与工程实例[C]//中国公路学会桥梁和结构工程分会2013年全国桥梁学术会议论文集.北京:中国公路学会桥梁和结构工程分会,2013.
    [51]
    文华,罗鑫,何明晋.格栅式地下连续墙桥梁基础沉降计算研究[J].施工技术,2015,44(15):105-110.
    [52]
    文华,李梦妮,邹娇丽,等.变截面井筒式地下连续墙竖向承载力计算研究[J].浙江工业大学学报,2017,45(3):243-248.
    [53]
    WU J J, CHENG Q G, WEN H, et al. A load transfer approach to rectangular closed diaphragm walls[C]//Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. 2016, 169(6):509-526.
    [54]
    WU J J, EL NAGGAR M H, CHENG Q G, et al. Iterative load transfer procedure for settlement evaluation of lattice-shaped diaphragm walls in multilayered soil[J]. Computers and Geotechnics, 2020, 120.DOI: 10.1016/j.compgeo.2019.103409.
    [55]
    CAO G, ZHU M, GONG W M, et al. Dynamic response of axially loaded end-bearing rectangular closed diaphragm walls[J]. Zeitschrift für Naturforschung A, 2020, 75(7):621-636.
    [56]
    孟凡超,陈晓东,舒中潘.地下连续墙基础沉降数值分析[J].公路,2007(3):55-58.
    [57]
    左玉柱,徐伟,李响.大型格形地下连续墙墙土相互作用机理的数值模拟分析[J].建筑施工,2010,32(10):1072-1073.
    [58]
    宋章,程谦恭,李东.闭合型地下连续墙竖向承载性状分析[J].铁道工程学报,2011,28(10):59-65.
    [59]
    宋章,程谦恭.闭合型地下连续墙内土芯承载性状分析[J].高速铁路技术,2011,2(6):18-26.
    [60]
    CHENG Q G, WU J J, SONG Z, et al. The behavior of a rectangular closed diaphragm wall when used as a bridge foundation[J]. Frontiers of Structural and Civil Engineering, 2012, 6(4):398-420.
    [61]
    刘博. 井筒式地下连续墙桥梁基础的静力承载性能研究和动力响应分析[D].济南:山东建筑大学,2014.
    [62]
    WU J J, CHENG Q G, WEN H, et al. Comparison on the horizontal behaviors of lattice-shaped diaphragm wall and pile group under static and seismic loads[J]. Shock and Vibration, 2016. https://doi.org/10.1155/2016/1289375.
    [63]
    WU J J, WANG L J, CHENG Q G. Soil arching effect of Lattice-Shaped Diaphragm Wall as bridge foundation[J]. Frontiers of Structural and Civil Engineering, 2017, 11(4):446-454.
    [64]
    ZHANG J L, CHENG Q G, LI Y, et al. Mechanism of liquefaction mitigation by rectangular closed diaphragm walls in sloping liquefiable deposits[J]. Soil Dynamics and Earthquake Engineering, 2021.DOI: 10.1016/j.soildyn.2021.106582.
    [65]
    ZHANG J L, CHENG Q G, LI Y, et al. Performance of rectangular closed diaphragm walls in gently sloping liquefiable deposits subjected to different earthquake ground motions[J]. Earthquake Engineering and Engineering Vibration, 2021(4):905-923.
    [66]
    邹刚.框格式地下连续墙在桐子林水电站中的应用[J].水力发电,2011,37(2):40-42.
    [67]
    张斌梁.超深格构式地下连续墙在海河沉管隧道护堤结构中的应用[J].铁道标准设计,2010(6):99-102.
    [68]
    方刚.超长悬臂格型地下连续墙在船坞坞室基坑中的应用[J].上海建设科技,2010(4):51-53.
    [69]
    朱建明,肖鹏,李耀良,等.我国最大的船坞工程,中船长兴造船基地施工报告:不良地质条件下的格形地下连续墙施工技术[J].建筑施工,2008(10):845-847.
    [70]
    邵耳东. 临海隧道格栅式地下连续墙支护结构受力性能研究[D].南京:东南大学,2018.
    [71]
    XIE M X, ZHENG J J, DONG J Z, et al. Foundation improvement with lattice-shaped diaphragm wall treatment for high embankment culverts on soft foundation[J]. Tunnelling and Underground Space Technology, 2020. https://doi.org/10.1016/j.tust.2020.103535.
    [72]
    XIA M T, ZHANG X D, YANG G S, et al. Analysis of vertical load transfer mechanism of assembled lattice diaphragm wall in collapsible loess area[J]. Advances in Civil Engineering, 2021.https://doi.org/10.1155/2021/5574934.
  • Relative Articles

    [1]QIN Sizhong, ZHENG Zhe, GU Yi, LU Xinzheng. Exploring and Discussion on the Application of Large Language Models in Construction Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006
    [4]Yang Jianxin, Yang Jianping, Zhou Chenghua. APPLICATION OF FUZZY MATHEMATICS AND METHOD OF APH IN SAFETY MANAGEMENT OF BLAST FURNACE SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 108-111. doi: 10.13204/j.gyjz200906026
    [5]Shi Yongjiu, Wu Lili, Wang Yuanqing, Ken Yluo, Xu Yue. FLEXIBLE-SUPPORTED SYSTEM OF SINGLE-LAYER CABLE MESH FOR POI NT-SUPPORTED GLASS CLADDING AND ITS ENGINEERING APPLICATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 1-5,43. doi: 10.13204/j.gyjz200502001
    [6]Wang Yuanqing, . THE ENGINEERING APPLICATION AND DESIGN ANALYSIS OF LOAD BEARING GLASS STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 6-10. doi: 10.13204/j.gyjz200502002
    [7]Rao Pingshan. EXPLORATION OF DECORATIVE ART OF ARCHITECTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 97-98. doi: 10.13204/j.gyjz200410029
  • Cited by

    Periodical cited type(1)

    1. 刘辉,杨鹏,朱浩稳,朱军. 粉煤灰掺量对软岩地区喷射混凝土建筑性能影响研究. 煤化工. 2023(02): 48-52 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.6 %FULLTEXT: 15.6 %META: 81.4 %META: 81.4 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %丽水: 0.6 %丽水: 0.6 %保定: 0.6 %保定: 0.6 %北京: 7.2 %北京: 7.2 %南京: 2.4 %南京: 2.4 %南宁: 0.6 %南宁: 0.6 %厦门: 1.2 %厦门: 1.2 %哈尔滨: 0.6 %哈尔滨: 0.6 %常德: 1.2 %常德: 1.2 %广州: 0.6 %广州: 0.6 %张家口: 3.6 %张家口: 3.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.2 %杭州: 1.2 %湖州: 0.6 %湖州: 0.6 %漯河: 1.2 %漯河: 1.2 %石家庄: 1.2 %石家庄: 1.2 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 1.8 %芝加哥: 1.8 %苏州: 1.2 %苏州: 1.2 %西宁: 33.5 %西宁: 33.5 %西安: 1.2 %西安: 1.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 4.8 %运城: 4.8 %邯郸: 0.6 %邯郸: 0.6 %郑州: 2.4 %郑州: 2.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.2 %长沙: 1.2 %其他丽水保定北京南京南宁厦门哈尔滨常德广州张家口晋城朝阳杭州湖州漯河石家庄绵阳芒廷维尤芝加哥苏州西宁西安贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (285) PDF downloads(1) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return