Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Chen Aoyi, Zhang Zhaoyi, Wang Hui, Yang Zhiyan, Zhang Jiaqi. CONSTRUCTION INDUSTRIALIZATION AND GREEN MODULE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 108-111. doi: 10.13204/j.gyjz201406024
Citation: YAN Xiaoyu, ZHAO Zhuo, WANG Jin. Research on Near-Fault Seismic Response of Rigid Frame Bridge Based on Shaking Table Test Considering SSI Effect[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 140-146. doi: 10.13204/j.gyjzG21102801

Research on Near-Fault Seismic Response of Rigid Frame Bridge Based on Shaking Table Test Considering SSI Effect

doi: 10.13204/j.gyjzG21102801
  • Received Date: 2021-10-28
    Available Online: 2022-12-01
  • A three-span continuous rigid framed bridge model with a geometric similarity ratio of 1/10 was designed to carry out the corresponding shaking table tests. In the test, soil-structure interaction was considered. On the basis of the experiment, the finite element analysis model was established. Ten typical near-fault ground motions were selected to carry out the full-bridge numerical simulation analysis. Taking the Penzien model as a benchmark, a comparative study of the influence of the SSI effect on the seismic response of key components of rigid frame bridges was carried out. The results showed that SSI effect had significant influence on seismic response of rigid frame bridge. SSI effect could increase the displacement response and strain response by more than 0.2 times and 0.5 times respectively. Compared with the far-field earthquake, the internal force and deformation of the structure were increased by more than one time under the action of near-fault earthquake. Both near-fault and SSI effects would further amplify the adverse effects also should be considered. Both near-fault effect and SSI effect were unfavorable factors for seismic response of rigid frame bridge, which should be taken into precise consideration in seismic design to ensure structural safety.
  • [1]
    贾俊峰, 杜修力, 韩强. 近断层地震动特征及其对工程结构影响的研究进展[J].建筑结构学报, 2015,36(1):1-12.
    [2]
    李晰, 贾宏宇, 李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击, 2017, 36(5):199-207.
    [3]
    JÓNSSON M H, BESSASON B, HAFLIDASON E. Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6):447-455.
    [4]
    PHAN V, SAIIDI M S, ANDERSON J, et al. Near-fault ground motion effects on reinforced concrete bridge columns[J]. Journal of Structural Engineering, 2007, 133(7):982-989.
    [5]
    HAN Q, DU X, LIU J, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2):262-273.
    [6]
    李宁,李忠献,李杨.近断层地震动作用下桥梁结构易损性曲面分析[J].地震工程与工程振动,2014,34(增刊1):307-312.
    [7]
    翟长海,张林春,李爽,等.近场地震动对大跨刚构桥影响的分析[J].防灾减灾工程学报,2010(增刊1):143-147.
    [8]
    石岩,王东升,孙治国.近断层地震动下减隔震桥梁地震反应分析[J].桥梁建设,2014,44(3):19-24.
    [9]
    楼梦麟, 王文剑, 马恒春等. 土-桩-结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7): 763-768.
    [10]
    张之颖,赵钟斗,吕西林,等. SSI体系阻尼特性振动台模型试验研究[J].土木工程学报,2010,43(2): 100-104.
    [11]
    李钟雄,徐略勤,李建中,等.砂土液化分析方法对连续梁桥地震响应的影响对比研究[J].结构工程师,2017,33(3):88-96.
    [12]
    张小玲,朱冬至,许成顺,等.强度弱化条件下饱和砂土地基中桩-土相互作用p-y曲线研究[J].岩土力学,2020,41(7):2252-2260.
    [13]
    孙治国,刘亚明,司炳君,等.基于OpenSees的桩-土-桥墩相互作用非线性数值分析模型[J].世界地震工程,2018,34(4):67-74.
    [14]
    SAADEGHVAZIRI M A, YAZDANI-MOTLAGH A R, RASHIDI S. Effects of soil-structure interaction on longitudinal seismic response of MSSS bridges[J]. 2000, 20(1-4):231-242.
    [15]
    中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011—2010[S]. 北京:中国建筑工业出版社,2016.
    [16]
    PENZIEN J, SCHEFFEY C F, PARMELEE R A. Seismic analysis of bridges on long piles[J]. Journal of the Engineering Mechanics Division, 1964, 90(3):223-254.
  • Relative Articles

    [1]XING Guolei, LI Shouying, WU Yingqiang, LIU Min, WANG Yongfeng. Research on Wind-Induced Responses of a Solar Tower in CSP Station Based on Aeroelastic Model Test[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 148-152,160. doi: 10.13204/j.gyjzG21101208
    [2]XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
    [3]HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
    [4]HUANG Peng, LIN Huatan, GU Ming. THE WIND TUNNEL TEST OF THE AEROELASTIC MODEL OF A STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 64-68. doi: 10.13204/j.gyjzG201906280004
    [12]Sun Binyan, Zhang Xuwei, Chen Jiaguang. VIBRATION MODES COUPLING EFFECT IN THE WIND-INDUCED RESPONSE OF A LONG SPAN ROOF[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 139-143. doi: 10.13204/j.gyjz201208027
    [13]Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
    [14]Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
    [15]Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
    [16]Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
    [17]Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
    [18]Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
    [19]Xue Weichen, Huang Yongjia, Wang Guinian. PROTOTYPE EXPERIMENTAL STUDIES ON FLEXIBLE FLANGES FOR LONG-SPAN ELECTRIC TRANSMISSION TOWER IN WUSONGKOU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 68-70. doi: 10.13204/j.gyjz200403021
  • Cited by

    Periodical cited type(3)

    1. 曾璧环,池曦锵,张佳毅,杨德栋,曹枚根. 海岛输电塔线体系风振响应及易损性分析. 山东电力技术. 2024(01): 24-34 .
    2. 朱薇薇,加永登增,侯栋,孙禄,周甘霖. 藏东高压输电线路设计中线条风荷载计算对比. 甘肃科技. 2023(05): 51-56 .
    3. 舒赣平,罗柯镕,王章轩,朱姣,余亮,墨泽,宁帅朋. 385m超大型长江大跨越输电塔铸钢节点受力性能研究. 工业建筑. 2022(08): 34-40+47 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 86.4 %META: 86.4 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %北京: 4.5 %北京: 4.5 %南京: 1.0 %南京: 1.0 %呼伦贝尔: 0.5 %呼伦贝尔: 0.5 %天津: 1.0 %天津: 1.0 %太原: 0.5 %太原: 0.5 %安康: 0.5 %安康: 0.5 %常德: 1.0 %常德: 1.0 %平凉: 1.0 %平凉: 1.0 %广州: 1.5 %广州: 1.5 %张家口: 1.0 %张家口: 1.0 %徐州: 0.5 %徐州: 0.5 %无锡: 1.0 %无锡: 1.0 %昆明: 3.5 %昆明: 3.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 2.5 %朝阳: 2.5 %杭州: 0.5 %杭州: 0.5 %武汉: 1.0 %武汉: 1.0 %沈阳: 1.0 %沈阳: 1.0 %济南: 0.5 %济南: 0.5 %温州: 1.0 %温州: 1.0 %漯河: 1.0 %漯河: 1.0 %潍坊: 1.0 %潍坊: 1.0 %秦皇岛: 1.0 %秦皇岛: 1.0 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 28.8 %西宁: 28.8 %西安: 1.0 %西安: 1.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.5 %运城: 3.5 %郑州: 2.0 %郑州: 2.0 %重庆: 2.0 %重庆: 2.0 %铁岭: 3.5 %铁岭: 3.5 %长沙: 2.0 %长沙: 2.0 %阿坝: 0.5 %阿坝: 0.5 %青岛: 1.0 %青岛: 1.0 %黄山: 0.5 %黄山: 0.5 %黄石: 1.0 %黄石: 1.0 %其他北京南京呼伦贝尔天津太原安康常德平凉广州张家口徐州无锡昆明晋城朝阳杭州武汉沈阳济南温州漯河潍坊秦皇岛芒廷维尤芝加哥西宁西安贵阳运城郑州重庆铁岭长沙阿坝青岛黄山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (95) PDF downloads(2) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return