Hu Huanxiao, Liu Jing, Wu Haitao, Zhou Lixiang. THREE-DIMENSIONAL NUMERICAL ANALYSIS OF SOIL ARCHING EFFECT SURROUNDING ANTI-SLIDE PILE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 88-93. doi: 10.13204/j.gyjz201003020
Citation:
LUO Bin. Researth on Deflection Calculation Method of Bidirectional Composite Slab with Steel Fiber Recycled Concrete Prefabricated Plate[J]. INDUSTRIAL CONSTRUCTION , 2022, 52(11): 157-161,138. doi: 10.13204/j.gyjzG21101311
Hu Huanxiao, Liu Jing, Wu Haitao, Zhou Lixiang. THREE-DIMENSIONAL NUMERICAL ANALYSIS OF SOIL ARCHING EFFECT SURROUNDING ANTI-SLIDE PILE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 88-93. doi: 10.13204/j.gyjz201003020
Citation:
LUO Bin. Researth on Deflection Calculation Method of Bidirectional Composite Slab with Steel Fiber Recycled Concrete Prefabricated Plate[J]. INDUSTRIAL CONSTRUCTION , 2022, 52(11): 157-161,138. doi: 10.13204/j.gyjzG21101311
Researth on Deflection Calculation Method of Bidirectional Composite Slab with Steel Fiber Recycled Concrete Prefabricated Plate
Received Date: 2021-10-13
Abstract
In order to promote the application of recycled concrete in structural engineering, especially in industrial construction, a kind of steel fiber reinforced recycled concrete with prefabricated layer and cast-in-situ layer as bidirectional composite slab (semi-recycled-semi-ordinary concrete composite slab) was proposed. Based on the theory of elastic thin slab, a formula for calculating the deflection of elastic stage was established according to its orthotropic structural characteristics. The calculation method of elastic-plastic stage deflection considering precise bending moment was given. On this basis, the comparison between theoretical calculation and experimental results showed that the elastic and elastic-plastic stage deflection calculation presented in the paper was practical and effective.
References
[1]
丁大钧. 薄板按弹性和塑性理论计算[M]. 南京:东南大学出版社, 1991.
[2]
姜磊. 钢筋混凝土双向板挠度的试验研究与分析控制[D]. 西安:西安建筑科技大学, 2011.
[3]
王俊, 赵基达, 胡宗羽. 我国建筑工业化发展现状与思考[J]. 土木工程学报, 2016(5):1-8.
[4]
MOHAMAD N, KHALIFA H, SAMAD A A, et al. Structural performance of recycled aggregate in CSP slab subjected to flexure load[J]. Construction and Building Materials, 2016, 115:669-680.
[5]
黄海林, 吴方伯, 祝明桥, 等. 板肋形式对预制带肋底板混凝土叠合板受弯性能的影响研究[J]. 建筑结构学报, 2015, 36(10):66-72.
[6]
侯和涛, 冯明远, 邱灿星, 等. 预应力混凝土钢肋叠合板受弯性能试验与理论研究[J]. 建筑结构学报, 2018, 39(3):103-110.
[7]
周梅, 张院强, 杨尚谕, 等. 自燃煤矸石砂轻混凝土单向叠合板的受弯性能[J]. 建筑材料学报,2021, 24(5):1066-1072.
[8]
中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S]. 北京:中国建筑工业出版社, 2012:17-25.
[9]
徐芝纶. 板壳理论[M]. 北京:高等教育出版社, 2006.
[10]
黄炜, 罗斌, 李斌, 等. 不同构造形式绿色混凝土叠合板受弯性能试验[J]. 湖南大学学报(自然科学版), 2019, 46(7):35-44.
[11]
TIMOSHENKO S, WOINOWSKY K S. Theory of plates and shells[M]. 2nd ed. New York:Mcgraw Hill Book Company Inc, 1958.
[12]
R派克, W L根勃尔. 钢筋混凝土板[M]. 上海:同济大学出版社,1992.
Relative Articles
[1] WAN Neng, HUANG Minshui, ZHU Hongping. Research on Two-Stage Damage Identification of Steel Frame Based on CNN and CMCM [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 123-129. doi: 10.3724/j.gyjzG23072612
[2] YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311
[3] LU Peng, ZHAO Tiansong, WANG Jian, CHANG Haosong, ZHENG Yun, LIU Xiaolan. A Method for Detecting Surface Corrosion Degree of Steel Structures Based on Computer Vision [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 133-139. doi: 10.3724/j.gyjzG23062009
[4] DENG Fei, NIE Huanxin, SHEN Lianhong, LI Xu, YANG Lin. Research on Time-Difference and Fresnel Zone Inversion Method Based on Unstructured Grid in Bridge Inspection [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 219-225. doi: 10.13204/j.gyjzG21062704
[5] JIANG Zhenyu, XIE Huibing. Research on Integration of Detection and Analysis for Rigid-Frame Bridges Based on BIM [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 180-185. doi: 10.13204/j.gyjzG21041612
[6] SHANG Renjie, ZENG Bin, RONG Hua, XU Qing, XU Man, XU Xiaoda. Research on Standardized Method of Stress Release Method for Measuring the Stress of Concrete [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 151-156. doi: 10.13204/j.gyjzG21102601
[7] LI Shujin, XIONG Shuqi, FAN Peiran, WANG Gang. Application Research on Deep Convolutional Neural Network Considering Residual Learning in Structural Damage Identification [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 192-198. doi: 10.13204/j.gyjzg21101009
[8] HUANG, Junbo, NING, Baokuan. ANALYSIS OF FREEZE-THAW DETERIORATION AND DAMAGE CHARACTERISTICS OF EXISTING CRACKED CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 142-147. doi: 10.13204/j.gyjz202001023
[13] Li Hua, Huang Bencai. THE NUMERICAL SIMULATION OF INFLUENCE OF AN INTERNAL BLAST CAVITY EFFECT ON OVERPRESSURE FOR A STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 48-53. doi: 10.13204/j.gyjz201202011
[14] Zhu Fangzhi, Zhao Tiejun, Jiang Fuxiang, Ma Zhiming. EXPERIMENTAL STUDY AND ANALYSIS ON DETERIORATION MECHANISM OF DAMAGED CONCRETE INDUCED BY MECHANICAL LOAD [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 67-71,95. doi: 10.13204/j.gyjz201212015
[15] Zha Xiaoxiong, Ye Fuxiang. THE NONDESTRUCTIVE FAULT DETECTION OF THE SANDWICH PANEL BY WAVELET ANALYSIS [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 46-51. doi: 10.13204/j.gyjz201103008
[16] Zhou Kui, Wang Qi, Liu Weidong, Zhang Jian. A SUMMARY REVIEW OF RECENT ADVANCES IN RESEARCH ON STRUCTURAL HEALTH MONITORING FOR CIVIL ENGINEERING INFRASTRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 96-102. doi: 10.13204/j.gyjz200903026
[17] Li Shuchun, Diao Bo, Ye Yinghua. DAMAGE SENSITIVITY ANALYSIS OF L-SHAPED SECTION BASED ON ORTHOGONAL DESIGN [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 5-9. doi: 10.13204/j.gyjz200705002
[18] Lu Zhoudao, Yu Jiangtao, Li Cancan. DISCUSSION ON DETECTION OF DAMAGED CONCRETE AFTER FIRE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 88-90. doi: 10.13204/j.gyjz200601026
[19] Wang Jianmin, Li Hui, Chen Longzhu. APPLICATION OF RELATIVE DISPLACEMENT CHANGE IN STOREYS OF FRAMES(RDCSF) IN STRUCTURAL DAMAGE DETECTION [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 47-49,46. doi: 10.13204/j.gyjz200511014
Cited by Periodical cited type(1) 1. 虞建,张纯,李睿,江汇强. 基于多任务学习的结构损伤识别. 南昌大学学报(工科版). 2022(04): 366-372 .
Other cited types(1)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2.5 5 7.5 10 12.5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 9.4 % FULLTEXT : 9.4 % META : 88.5 % META : 88.5 % PDF : 2.1 % PDF : 2.1 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 11.0 % 其他 : 11.0 % China : 2.6 % China : 2.6 % 上海 : 1.6 % 上海 : 1.6 % 东京 : 2.6 % 东京 : 2.6 % 东莞 : 1.0 % 东莞 : 1.0 % 兰州 : 1.6 % 兰州 : 1.6 % 北京 : 4.2 % 北京 : 4.2 % 南京 : 0.5 % 南京 : 0.5 % 南昌 : 0.5 % 南昌 : 0.5 % 合肥 : 0.5 % 合肥 : 0.5 % 大连 : 0.5 % 大连 : 0.5 % 宣城 : 2.1 % 宣城 : 2.1 % 宿州 : 0.5 % 宿州 : 0.5 % 常德 : 0.5 % 常德 : 0.5 % 张家口 : 1.6 % 张家口 : 1.6 % 怀化 : 0.5 % 怀化 : 0.5 % 成都 : 0.5 % 成都 : 0.5 % 扬州 : 1.0 % 扬州 : 1.0 % 晋城 : 1.0 % 晋城 : 1.0 % 朝阳 : 0.5 % 朝阳 : 0.5 % 杭州 : 1.0 % 杭州 : 1.0 % 武汉 : 0.5 % 武汉 : 0.5 % 法拉盛 : 0.5 % 法拉盛 : 0.5 % 济南 : 0.5 % 济南 : 0.5 % 深圳 : 0.5 % 深圳 : 0.5 % 漯河 : 3.1 % 漯河 : 3.1 % 益阳 : 0.5 % 益阳 : 0.5 % 石家庄 : 0.5 % 石家庄 : 0.5 % 福州 : 1.6 % 福州 : 1.6 % 芒廷维尤 : 11.0 % 芒廷维尤 : 11.0 % 芝加哥 : 1.6 % 芝加哥 : 1.6 % 茂名 : 0.5 % 茂名 : 0.5 % 西宁 : 31.4 % 西宁 : 31.4 % 西安 : 0.5 % 西安 : 0.5 % 贵阳 : 0.5 % 贵阳 : 0.5 % 运城 : 6.8 % 运城 : 6.8 % 邯郸 : 1.0 % 邯郸 : 1.0 % 郑州 : 1.6 % 郑州 : 1.6 % 阳泉 : 1.0 % 阳泉 : 1.0 % 其他 China 上海 东京 东莞 兰州 北京 南京 南昌 合肥 大连 宣城 宿州 常德 张家口 怀化 成都 扬州 晋城 朝阳 杭州 武汉 法拉盛 济南 深圳 漯河 益阳 石家庄 福州 芒廷维尤 芝加哥 茂名 西宁 西安 贵阳 运城 邯郸 郑州 阳泉