Citation: | WU Lele, TANG Caoming, LUO Kaihai, CHENG Shaoge, HUANG Shimin. Comparisons of Design and Assessment Standards of Masonry Structures in China, the US and Europe[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 191-198. doi: 10.13204/j.gyjzG21092702 |
[1] |
ELLINGWOOD B R, RELIAELLINGWOOD B R. Reliability-based condition assessment assessment and LRFD for existing structures[J]. Structural Safety, 1996, 18(2/3):67-80.
|
[2] |
ASP O, LAAKSONEN A. Background of target reliability levels for existing structures[J]. Safety, IABSE Symposium Report,2013, 100(5):252-259.
|
[3] |
STEENBERGEN R D J M, SýKORA M, DIAMANTIDIS D, et al. Economic and human safety reliability levels for existing structures[J]. Structural Concrete,2015,16(3):323-332.
|
[4] |
顾祥林,许勇,张伟平.既有建筑结构构件的安全性分析[J].建筑结构学报,2004,25(6):117-122.
|
[5] |
黄炎生,邓浩,罗仁志.基于分项系数法的既有框架结构可靠性评估[J].华南理工大学学报,2008,36(12):34-37.
|
[6] |
李英民,周小龙,罗文文,等.基于可靠性理论的既有结构楼面活荷载取值研究[J].建筑结构,2014,44(17):83-94.
|
[7] |
The Masonry Standards Joint Committee. Building code requirements and specification for masonry structures:ACI 530[S]. USA:Amer Society of Civil Engineers, 2008.
|
[8] |
American Society of Civil Engineers. Minimum Design loads and associated criteria for buildings and other structures:ASCE 7-16[S]. USA:American Society of Civil Engineers, 2016.
|
[9] |
American Concrete Institute. Building code requirements for structural concrete:ACI 318-19[S]. USA:American Concrete Institute, 2019.
|
[10] |
American Society of Civil Engineers. Seismic evaluation and retrofit of existing building:ASCE 41-17[S]. USA:American Society of Civil Engineers, 2017.
|
[11] |
International Code Council. International existing building code:IEBC[S]. USA:International Code Council. International, INC, 2017.
|
[12] |
The Standards Policy and Strategy Committee. Eurocode 6-Design of masonry structures-Part 1-1:general rules for reinforced and unreinforced masonry structures:BS EN 1996-1-1:2005[S]. UK:British Standards Institution, 2005.
|
[13] |
The Standards Policy and Strategy Committee. Basis of structural design:BS EN 1990:2002[S]. UK:British Standards Institution, 2002.
|
[14] |
The Standards Policy and Strategy Committee. General rules, seismic action and rules for buildings:BS EN 1998-1:2004[S]. UK:British Standards Institution, 2004.
|
[15] |
International Organization for Standardization. Bases for design of structures-assessment of existing structures:ISO 13822[S]. Switzerland:International Organization for Standardization, 2010.
|
[16] |
Nederlands Norm. Assessment of existing structures in case of reconstruction and disapproval:Basic Rules:NEN 8700[S]. Nederland:NEN, 2011.
|
[17] |
The Standards Policy and Strategy Committee. Eurocode 8-design of structures for earthquake resistance-part 3:assessment and retrofitting of buildings:BS EN1998-3:2005[S]. UK:British Standards Institution, 2005.
|
[18] |
中华人民共和国住房和城乡建设部. 砌体结构设计规范:GB 50003-2011[S]. 北京:中国建筑工业出版社, 2011.
|
[19] |
中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准:GB 50068-2018[S]. 北京:中国建筑工业出版社, 2018.
|
[20] |
中华人民共和国住房和城乡建设部. 建筑抗震鉴定标准:GB 50023-2009[S]. 北京:中国建筑工业出版社, 2011.
|
[21] |
中华人民共和国住房和城乡建设部.民用建筑可靠性鉴定标准:GB 50292-2015[S]. 北京:中国建筑工业出版社, 2015.
|
[22] |
中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012.
|
[23] |
上海市建设和交通委员会. 既有建筑物结构检测与评定标准:DG/TJ08-804-2005[S]. 上海:同济大学出版社, 2005.
|
[1] | HUANG Xigui, LUO Shengchang, LI Lixiao. Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101 |
[2] | QIU Bin, LEI Honggang, SHEN Yu, JI Xuanzhe. Fatigue Load Spectrum Research of the Grid Structure Under Suspension Crane Loading[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 143-151. doi: 10.13204/j.gyjzG21102408 |
[3] | MA Yunlong, WANG Xiuli, FENG Zhujun, GOU Baolong, HOU Hongjie. RESEARCH ON STRENGTHENING DESIGN FOR JACKING OF A LONG-SPAN STEEL PLANT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 205-210. doi: 10.13204/j.gyjzG21061602 |
[4] | CHEN Zhengfa, ZHANG Jie, YAN Zhiguo, BIAN Minghui. STUDY OF WATER AND EARTH PRESSURE MODES ON SHIELD TUNNELS IN WATER-RICH DIORITE STRATA[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 25-30. doi: 10.13204/j.gyjzG21031806 |
[5] | LI Zhaoyang, PAN Xinzhong, YU Bo. NONLINEAR ANALYSIS AND FIELD TEST VERIFICATION OF STEEL TUBULAR SCAFFOLDS UNDER CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 112-117. doi: 10.13204/j.gyjzG201904160007 |
[6] | LIU Weiran, YU Haifeng, HUANG Jun, YU Yue, DU Shoujun, GAO Renqing, CHEN Zengshun, WANG Qihua, LIU Ze. MEASUREMENT AND FORCED ANALYSIS OF FORMWORK SUPPORTING FRAME WITH NEW PULLEY-CLIP STYLE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 118-121,146. doi: 10.13204/j.gyjzG201904210001 |
[9] | Hu Changming, Liu Fengyun, Yang Jianhua, Zhao Yunbo, Ren Wenjun, Cai Suping. ON-SITE MEASUREMENT AND ANSYS ANALYSIS OF CANTILEVER[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 136-142. doi: 10.13204/j.gyjz201504026 |
[10] | Lin Zhangzhang, Zhang Yi, Yang Junjie. ANALYSIS OF MULTI-STORY FORMWORK SUPPORTING SYSTEM BY DETECTION AND FEM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 94-98. doi: 10.13204/j.gyjz201302019 |
[11] | Hu Changming, Wang Jie, Li Jiatao, Liu Fengyun. THE FULL ANALYSIS OF HIGH SUPPORT SYSTEM FOR FORMWORK DURING THE CONSTRUCT OF THE ROOF[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 88-93,133. doi: 10.13204/j.gyjz201302018 |
[12] | Chen Xu. STUDY ON FIELD MEASUREMENT OF HIGH-FORMWORK WITH A HEIGHT OF 15 m[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 106-108. doi: 10.13204/j.gyjz201308023 |
[13] | Zhang Xuezhi, Zhang Xuefeng, Ying Yimiao, Wang Senjun. ACTUAL MEASUREMENT AND ANALYSIS OF HIGH FORM STRUT OF FASTENER-STYLE STEEL PIPE SCAFFOLD SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 15-18. doi: 10.13204/j.gyjz201101004 |
[14] | Zhuang Jinping, Cai Xuefeng, Lin Zengzhong, Zhou Jizhong, Lin Huaqiang. SITE MEASUREMENT AND DISCUSSION ON MODIFYING METHOD OF BEARING CAPACITY FORMULA OF SUPER HIGH OR LARGE-SPAN FORM STRUT SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 94-99. doi: 10.13204/j.gyjz201109021 |
[15] | Zeng Fankui, Hu Changming, Yan Xin, Dong Pan, Mei Yuan. EXPERIMENTAL STUDY ON STABILITY OF COUPLER STEEL TUBE FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 28-31. doi: 10.13204/j.gyjz201002007 |
[16] | Zeng Fankui, Hu Changming, Ge Zhaoshen, Yan Xin. STUDY ON VALUE OF EFFECTIVE LENGTH COEFFICIENT OF UPRINGT STANCHION OF COUPLER STEEL TUBE FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 24-27. doi: 10.13204/j.gyjz201002006 |
[17] | Hu Changming, Liu Hongliang, Zeng Fankui, Ge Zhaoshen, Yin Hongbing. RESEARCH ADVANCES FOR COUPLER IN RESEARCH ON STEEL TUBE TALL FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 1-6. doi: 10.13204/j.gyjz201002001 |
[18] | Hu Changming, Mei Yuan, Dong Pan, Zhang Xiaoyong. ANALYSIS AND STUDY ON THE BEARING CAPACITY REDUCTION FACTOR OF COUPLER TALL FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 12-16. doi: 10.13204/j.gyjz201002003 |
[19] | Wang Xin, Yang Shirong, Feng Yonggang. THE ON-SITE TEST OF PUMPING PRESSURE OF CONCRETE-FILLED STEEL TUBE PUMPING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 98-101. doi: 10.13204/j.gyjz200912024 |
[20] | Wang Yingge. FIELD TEST AND NUMERICAL ANALYSIS OF INTERACTION OF PILE- RAFT FOUNDATION ULTRA - HIGH TUBE-IN-TUBE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 10-15. doi: 10.13204/j.gyjz200505003 |