Citation: | YU Haiyang, HU Ju, ZHANG Guiyan, HUANG Yujun, ZHU Guofei, CUI Hongzhi, BAO Xiaohua. Research on Seismic Responses of Underground Structures Considering Influence of Contact Surfaces[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 156-165. doi: 10.13204/j.gyjzG21090402 |
[1] |
GOODMAN R E, TAYLOR R L, BREKKE T L A. A model for the mechanics of jointed rock[J]. ASCE Soil Mechanics and Foundation Division Journal, 1968, 99(5):637-659.
|
[2] |
DESAI C S, ZAMAN M M, LIGHTNER J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1):19-43.
|
[3] |
ZIENKIEWICZ O C, PANDE G N. Time-dependent multilaminate model of rocks:a numerical study of deformation and failure of rock masses[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 1(3):219-247.
|
[4] |
LIU S T, LI P Z, ZHANG W Y, et al. Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations[J]. Soil Dynamics and Earthquake Engineering, 2020, 138.https://doi.org/10.1016/j.soildyn.2020.106333.
|
[5] |
刘光磊, 宋二祥, 刘华北, 等. 饱和砂土地层中隧道结构动力离心模型试验[J]. 岩土工程学报, 2008, 29(8):2070-2076.
|
[6] |
路德春, 王欣, 罗磊, 等. 土与结构接触特性对地下结构地震反应的影响研究[J]. 防灾减灾工程学报, 2017, 37(2):177-186.
|
[7] |
叶冠林. DBLEAVES手册[M]. 上海:上海交通大学出版社, 2013.
|
[8] |
陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12):1887-1894.
|
[9] |
凌道盛, 郭恒, 蔡武军, 等. 地铁车站地震破坏离心机振动台模型试验研究[J]. 浙江大学学报(工学版), 2012, 46(12):2201-2209.
|
[10] |
郭恒. 地铁车站地震响应离心机模型试验研究[D]. 杭州:浙江大学, 2012.
|
[11] |
ZHANG F, YE B, NODA T, et al. Explanation of cyclic mobility of soils:approach by stress-induced anisotropy[J]. Soils & Foundations, 2011, 47(4):635-648.
|
[12] |
ZHANG F, YE B, YE G L. Unified description of sand behavior[J]. Frontiers of Architecture & Civil Engineering in China, 2011, 5(2):121-150.
|
[13] |
HASHIGUCHI K. Sub-loading surface model in unconventional plasticity[J]. International Journal of Solids & Structures, 1989, 25(8):917-945.
|
[14] |
ASAOKA A. Super-loading yield surface concept for the saturated structured soils[C]//Proc European Conference on Numerical Methods in Geotechnical Engineering. 1998.
|
[15] |
YE B, YE G L, ZHANG F, et al. Experiment and numerical simulation of repeated liquefaction-consolidation of sand[J]. Soils & Foundations, 2007, 47(3):547-558.
|
[16] |
KHERADI H, YE B, NISHI H, et al. Optimum pattern of ground improvement for enhancing seismic resistance of existing box culvert buried in soft ground[J]. Tunnelling & Underground Space Technology, 2017, 69:187-202.
|
[17] |
Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian analysis of continua in 3 dimensions, version 3.0, user's manual[M]. Minneapolis:Itasca Consulting Group, Inc., 2005.
|
[18] |
BAO X H, XIA Z F, et al. Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground[J]. Tunnelling & Underground Space Technology, 2017, 66:91-106.
|
[19] |
MEHRZAD B, HADDAD A, JAFARIAN Y. Centrifuge and numerical models to investigate liquefaction-induced response of shallow foundations with different contact pressures[J]. International Journal of Civil Engineering, 2016, 14(2):117-131.
|
[20] |
LIU H B, SONG E X. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations[J]. Computers & Geotechnics, 2005, 32(4):223-244.
|
[21] |
CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76(S1):13-28.
|
[22] |
CHEN S, ZHUANG H Y, QUAN D Z, et al. Shaking table test on the seismic response of large-scale subway station in a loess site:a case study[J]. Soil Dynamics and Earthquake Engineering, 2019, 123:173-184.
|