Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Chun-fen, Niu Di-tao, Dong Zhen-ping. STUDY ON DURABILITY OF COVER CONCRETE FOR RAILWAY BRIDGES IN ARID REGIONS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 65-67,92. doi: 10.13204/j.gyjz200604019
Citation: LIU Jianhong, YANG Bo, JIE Lianbin, SHU Qianjin, ZHONG Chongshuo, YUAN Guanglin. BEARING PERFORMANCES AND SAFETY ASSESSMENT OF TRANSMISSION TOWER-LINE SYSTEMS IN MINING AREAS UNDER SURFACE HORIZONTAL DEFORMATION AND BOUNDARY LAYER WIND[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 90-99. doi: 10.13204/j.gyjzG21080302

BEARING PERFORMANCES AND SAFETY ASSESSMENT OF TRANSMISSION TOWER-LINE SYSTEMS IN MINING AREAS UNDER SURFACE HORIZONTAL DEFORMATION AND BOUNDARY LAYER WIND

doi: 10.13204/j.gyjzG21080302
  • Received Date: 2021-08-03
    Available Online: 2022-03-29
  • Taking a typical 220 kV transmission tower-line system located in the mining area as the research object, the finite element model of the tower-line system was constructed by ANSYS software. The displacement time history of the control points of the tower and the stress time history of key crossed bracing members and tower legs under the action of boundary layer wind in different directions were studied. The relations between the maximum equivalent stress of legs of the tower and the surface horizontal deformation direction, the deformation degree, and the wind direction angle of boundary layer were analyzed. The results showed that the four leg members were the key members to determine the safety of tower against surface deformation and wind under the action of surface horizontal deformation and boundary layer wind. The displacement of the tower displacement control points were within the allowable range of normal operation. The most unfavorable action direction of surface horizontal deformation was 30°. The most unfavorable directions of boundary layer wind were 30° and 45°. There was a linear relation between the maximum equivalent stress of leg members of the tower and the degree of surface deformation. On this basis, the correlations between the maximum equivalent stress of leg members of the tower and the direction and degree of surface horizontal deformation were obtained, and a safety assessment method of the transmission tower-line system in mining area under the action of surface horizontal deformation and boundary layer wind was proposed.
  • [1]
    袁广林,刘涛,张先扬,等.复合地表变形对输电铁塔内力和变形的影响分析[J].建筑科学,2009,25(9):14-17.
    [2]
    袁广林,张云飞,陈建稳,等.塌陷区输电铁塔的可靠性评估[J].电网技术,2010,34(1):214-218.
    [3]
    SHU Q J,YUAN G L,GUO G L,et al.Limits to Foundation Displacement of an Extra High Voltage Transmission Tower in a Mining Subsidence Area[J].International Journal of Mining Science and Technology,2012,22(1):13-18.
    [4]
    SHU Q J,YUAN G L,HUANG Z H,et al.The Behaviour of the Power Transmission Tower Subjected to Horizontal Support's Movements[J].Engineering Structures,2016,123:166-180.
    [5]
    刘鲁杰.特高压输电铁塔结构分析及抗地表变形性能研究[D].徐州:中国矿业大学,2018.
    [6]
    叶盛.采动区110 kV输电铁塔抗地表变形及抗风性能研究[D].徐州:中国矿业大学,2015.
    [7]
    SHU Q J,HUANG Z H,YUAN G L,et al.Impact of Wind Loads on the Resistance Capacity of the Transmission Tower Subjected to Ground Surface Deformations[J].Thin-Walled Structures,2018,131:619-630.
    [8]
    仲崇硕.地表变形作用下输电塔线体系的风振响应和承载性能研究[D].徐州:中国矿业大学,2019.
    [9]
    谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报,2006(4):126-131.
    [10]
    张勇.输电线路风灾防御的现状与对策[J].华东电力,2006(3):28-31.
    [11]
    YASUI H,MARUKAWA H,MOMOMURA Y,et al.Analytical Study on Wind-Induced Vibration of Power Transmission Towers[J].Journal of Wind Engineering & Industrial Aerodynamics,1999,83(1/2/3):431-441.
    [12]
    BATTISTA R C,RODRIGUES R S,PFEIL M S.Dynamic Behavior and Stability of Transmission Line Towers Under Wind Forces[J].Journal of Wind Engineering and Industrial Aerodynamics,2003,91(8):1051-1067.
    [13]
    GANI F G,LEGERON F L.Dynamic Response of Transmission Lines Guyed Towers Under Wind Loading[J].Canadian Journal of Civil Engineering,2010,37(3):450-465.
    [14]
    谢华平,何敏娟.输电塔线体系风振响应分析[J].振动与冲击,2011,30(7):45-51.
    [15]
    张传才,郭强.输电塔线体系风振响应频域分析的一种简化方法[J].应用力学学报,2013(5):782-786.
    [16]
    郑敏,梁枢果,熊铁华.基于塔线体系风洞试验的输电塔风致响应计算[J].武汉理工大学学报,2013,35(11):124-131.
    [17]
    谢强,李继国,严承涌,等.1 000 kV特高压输电塔线体系风荷载传递机制风洞试验研究[J].中国电机工程学报,2013,33(1):109-116.
    [18]
    DENG H Z,XU H J,DUAN C Y,et al.Experimental and Numerical Study on the Responses of a Transmission Tower to Skew Incident Winds[J].Journal of Wind Engineering and Industrial Aerodynamics,2016,157:171-188.
    [19]
    付航.下击暴流作用下输电塔-线体系的稳定性分析[D].重庆:重庆大学,2016.
    [20]
    安旭文,王昊深,侯建国.国内外输电线路设计规范风荷载取值标准的比较[J].武汉大学学报(工学版),2011(6):740-743.
    [21]
    中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012.
    [22]
    中华人民共和国电力工业部.架空输电线路杆塔结构设计技术规定:DL/T 5154-2012[S].北京:中国计划出版社,2012.
    [23]
    中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社,2018.
    [24]
    国家能源局.架空输电线路运行规程:DL/T 741-2019[S].2019.
  • Relative Articles

    [1]HUANG Xigui, LUO Shengchang, LI Lixiao. Research on Wind Speed Profile Characteristics of Typhoon Boundary Layer Based on Measured Data[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 98-105. doi: 10.3724/j.gyjzG23121101
    [2]LIN Yongjun, XIAO Tianxu, ZHANG Zengpeng, XIE Yuanang. Fuzzy Comprehensive Evaluation Method for Safety of Concrete Frame Structures Based on AHP-Membership Theory[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 28-38,45. doi: 10.13204/j.gyjzG22041612
    [3]LUO Kerong, YU Liang, SHU Ganping, LI Buhui, NING Shuaipeng. Analysis of Wind-Induced Response of a 500 kV Long-Span Transmission Tower-Line System Crossing the Yangtze River[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 1-8. doi: 10.13204/j.gyjzG21121615
    [4]MIN Guangyun, LIU Xiaohui, ZHOU Xiaohui, CAI Mengqi, YI Hangyu. PARAMETRIC VIBRATION MODELING AND RESONANCE ANALYSIS FOR TENSION SUSPENSION CABLE UNDER HORIZONTAL MOVABLE BOUNDARY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 99-104. doi: 10.13204/j.gyjzG20030204
    [5]JIA Jianjun, LIU Chunkui, JIE Lianbin, SHU Qianjin, ZHONG Chongshuo, YUAN Guanglin. STUDY ON ANTI-GROUND-DEFORMATION CAPACITY OF TRANSMISSION TOWER LINE SYSTEMS IN MINING AREAS IN DIFFERENT DIRECTIONS SUBJECTED TO HORIZONTAL GROUND DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 123-128. doi: 10.13204/j.gyjzG21041302
    [6]LIU Shi, YANG Yi, HUANG Zheng, GAO Qingshui, ZHANG Chu, LI Zhengliang, WANG Zhisong. STUDY ON COLLAPSE STATES OF TRANSMISSION TOWERS BY WIND-TUNNEL TESTS OF TOWER-LINE SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 145-151. doi: 10.13204/j.gyjzGYJZ201907150004
    [17]Dai Huijuan, Bai Guoliang, Wang Bo, Xue Feng, Li Hongxing. STUDY OF DISPLACEMENT-BASED DESIGN METHOD OF AIR-COOLED CONDENSER STRUCTURE CONSIDERING EQUIPMENT SAFETY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 125-130. doi: 10.13204/j.gyjz201502026
    [18]Chen Ping, Guo Qi, Zhang Pengli. ANALYSIS OF SEISMIC DAMAGE AND EVALUATION ON THE SAFETY OF CHONGWEN PAGODA[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 65-69. doi: 10.13204/j.gyjz201502015
    [19]Tian Li, Yu Qiqi, Yin Dong, Wang Qian. STATE OF THE ART: WIND-RAIN RESISTANCE OF POWER TRANSMISSION TOWER-LINE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 101-107. doi: 10.13204/j.gyjz201406023
    [20]Wei Feng, Xu Weibo. THE DESIGN CONCEPT OF ZHENGZHOU UNIVERSITY CENTER FOR SAFETY EVALUATION OF DRUGS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 158-161. doi: 10.13204/j.gyjz201309031
  • Cited by

    Periodical cited type(7)

    1. 陈树平,李成,王彦海,苗红璞,李双林,周冬阳. 考虑SSI的滑坡区输电塔线体系安全性分析. 安全与环境工程. 2024(05): 135-145 .
    2. 樊晨旭,张德广,李响,刘鲲鹏,张阳,黄模佳,杨垂玮. 输电铁塔基础水平位移对杆件内力变化的影响. 南昌大学学报(工科版). 2024(04): 443-450 .
    3. 周冬阳,王彦海,刘晓亮,李梦源,邹梦健. 基于IWOA-BP神经网络的滑坡区塔线体系应力预测模型. 国外电子测量技术. 2023(07): 121-131 .
    4. 郭文兵,马志宝,焦轶恒,陈新明,白二虎. 电视信号铁塔下压煤开采与动态调斜保护技术. 煤炭学报. 2023(S1): 15-27 .
    5. 张煜恒,沙池橙,廖海林,钱振东,黄国,吕勇,倪宏宇. 基于杆件核心度的输电铁塔健康状态可靠度评价研究. 西安理工大学学报. 2023(02): 281-290 .
    6. 黄达洋. 电力工程输电线路施工管理策略分析. 光源与照明. 2022(06): 199-201 .
    7. 于虹,李昊,康彪,汪大海,张志强,张贵峰,张海鹏. 采空塌陷区输电杆塔基础变形率限值研究. 中国电力. 2022(12): 124-134 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.0 %FULLTEXT: 18.0 %META: 82.0 %META: 82.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %China: 5.8 %China: 5.8 %保定: 0.7 %保定: 0.7 %北京: 2.2 %北京: 2.2 %十堰: 1.4 %十堰: 1.4 %嘉兴: 0.7 %嘉兴: 0.7 %太原: 0.7 %太原: 0.7 %宿州: 0.7 %宿州: 0.7 %常德: 0.7 %常德: 0.7 %张家口: 0.7 %张家口: 0.7 %扬州: 0.7 %扬州: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 1.4 %朝阳: 1.4 %梧州: 0.7 %梧州: 0.7 %武汉: 0.7 %武汉: 0.7 %济南: 0.7 %济南: 0.7 %湘潭: 0.7 %湘潭: 0.7 %漯河: 1.4 %漯河: 1.4 %芒廷维尤: 7.9 %芒廷维尤: 7.9 %西宁: 44.6 %西宁: 44.6 %贵阳: 1.4 %贵阳: 1.4 %运城: 10.1 %运城: 10.1 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.7 %郑州: 0.7 %长治: 0.7 %长治: 0.7 %阳泉: 0.7 %阳泉: 0.7 %其他China保定北京十堰嘉兴太原宿州常德张家口扬州晋城朝阳梧州武汉济南湘潭漯河芒廷维尤西宁贵阳运城邯郸郑州长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(0) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return