Citation: | SHI Qingxuan, WAN Shengmu. Research Progress on Working and Mechanical Properties of 3D Printed Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 208-218. doi: 10.13204/j.gyjzG21072405 |
[1] |
KHOSHNEVIS B, DUTTON R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials[J]. Materials and Technology, 1998, 13(2):53-56.
|
[2] |
蔡建国,张骞,杜彩霞,等. 3D打印混凝土技术的研究现状与发展趋势[J].工业建筑. 2021, 51(6):1-8.
|
[3] |
LIM S, BUSWELL R A, LE T T, et al. Development in construction-scale additive manufacturing processing[J]. Automation in Construction, 2012, 21:262-268.
|
[4] |
GOSSELIN C, DUBALLET R H, ROUX P H, et al. Large-scale 3D printing of ultra-high performance concrete:a new processing route for architects and builders[J]. Materials and Design, 2016, 100:102-109.
|
[5] |
BOS F, WOLFS R, AHMED Z, et al. Additive manufacturing of concrete in construction:potentials and challenges of 3D concrete printing[J]. Virtual and Physical Prototyping, 2016, 11:209-225.
|
[6] |
ASPRONE D, AURICCHIOB F, MENNA C, et al. 3D printing of reinforced concrete elements:technology and design approach[J]. Construction and Building Materials, 2018, 165:218-231.
|
[7] |
ZHANG J C, WANG J L, DONG S F, et al. A review of the current progress and application of 3D printed concrete[J]. Composites Part A, 2019, 125. DOI: 10.1016/j.compositesa.2019.105533.
|
[8] |
RASHID A A, KHAN S A, AL-GHAMDI S G, et al. Additive manufacturing:technology, applications, markets, and opportunities for the built environment[J]. Automation in Construction, 2020, 118. DOI: 10.1016/j.autcon.2020.103268.
|
[9] |
SOUZA M T, FERREIRA I M, MORAES E G, et al. 3D printed concrete for large-scale buildings:an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects[J]. Journal of Building Engineering, 2020, 32. DOI: 10.1016/j.jobe.2020.101833.
|
[10] |
SCHUTTER G D, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete:technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112:25-36.
|
[11] |
MAZHOUD B, PERROT A, PICANDET V, et al. Underwater 3D printing of cement-based mortar[J]. Construction and Building Materials, 2019, 214:458-467.
|
[12] |
ASPRONE D, MENNA C, BOS F P, et al. Rethinking reinforcement for digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112:111-121.
|
[13] |
张翼,朱艳梅,任强,等. 3D打印建筑技术及其水泥基材料研究进展评述[J].硅酸盐通报. 2021, 40(6):1796-1807.
|
[14] |
BADUGE S K, NAVARATNAM S, ABU-ZIDAN Y, et al. Improving performance of additive manufactured (3D printed) concrete:a review on material mix design, processing, interlayer bonding, and reinforcing methods[J]. Structures, 2021, 29:1597-1609.
|
[15] |
张超,邓智聪,侯泽宇,等.混凝土3D打印研究进展[J].工业建筑, 2020, 50(8):16-21.
|
[16] |
MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162:613-627.
|
[17] |
BAZ B, AOUAD G, REMOND S. Effect of the printing method and mortar's workability on pull-out strength of 3D printed elements[J]. Construction and Building Materials, 2020, 230. DOI: 10.1016/j.conbuildmat.2019.117002.
|
[18] |
赵颖,刘维胜,王欢,等.石灰石粉对3D打印水泥基材料性能的影响[J].材料导报, 2020, 34(36):217-220.
|
[19] |
朱艳梅,张翼,蒋正武.羟丙基甲基纤维素对3D打印砂浆性能影响研究[J].建筑材料学报, 24(6):1123-1130.
|
[20] |
赵仁文.立井井壁3D打印混凝土配合比优化及其硬化性能研究[D].徐州:中国矿业大学, 2019:72-81.
|
[21] |
肖博丰,李古,张广虎.耐碱玻璃纤维掺量对3D打印砂浆性能的影响研究[J].硅酸盐通报. 2021, 40(6):1889-1894.
|
[22] |
NOURA K, GEORGES A, KHADIJA E C, et al. Use of calcium sulfoaluminate cement for setting control of 3D-printing mortars[J]. Construction and Building Materials, 2017, 157:382-391.
|
[23] |
孙晓燕,乐凯迪,王海龙,等.挤出形状/尺寸对3D打印混凝土力学性能影响研究[J].建筑材料学报, 2020, 23(6):1313-1320.
|
[24] |
HOU S D, DUAN Z H, XIAO J Z, et al. A review of 3D printed concrete:performance requirements, testing measurements and mix design[J]. Construction and Building Materials, 2021, 273. DOI: 10.1016/j.conbuildmat.2020.121745.
|
[25] |
LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45:1221-1232.
|
[26] |
杨钱荣,赵宗志,肖建庄,等.矿物掺合料与外加剂对3D打印砂浆性能的影响[J].建筑材料学报, 2021, 24(2):412-418.
|
[27] |
王亚坤,杨钱荣.添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J].建筑材料学报. 2021, 24(4):749-757.
|
[28] |
MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-based additive manufacturing with cement-based materials-production steps, processes, and their underlying physics:a review[J]. Cement and Concrete Research, 2020, 132:1-14.
|
[29] |
SECRIERU E, MOHAMED W, FATAEI S, et al. Assessment and prediction of concrete flow and pumping pressure in pipeline[J]. Cement and Concrete Composites, 2020, 107. DOI: 10.1016/j.cemconcomp.2019.103495.
|
[30] |
ROUSSEL N. Rheological requirements for printable concretes[J]. Cement and Concrete Research, 2018, 112:76-85.
|
[31] |
SOUZA M T, FERREIRA I M, MORAES E G, et al. 3D printed concrete for large-scale buildings:an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects[J]. Journal of Building Engineering, 2020, 32. DOI: 10.1016/j.jobe.2020.101833.
|
[32] |
蔺喜强,张涛,霍亮,等.快硬早强混凝土3D打印施工方法及应用[J].混凝土, 2018(7):141-145.
|
[33] |
王里,王伯林,白刚,等. 3D打印混凝土各向异性力学性能研究[J].实验力学, 2020, 35(2):243-250.
|
[34] |
HIROKI O, VENKATSH N N, VIKTOR M. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing[J]. Materials, 2018,11. DOI: 10.3390/ma11081375.
|
[35] |
PAPACHRISTOFOROU M, MITSOPOULOS V, STEFANIDOU M. Evaluation of workability parameters in 3D printing concrete[J]. Procedia Structural Integrity, 2018, 10:155-162.
|
[36] |
MALAEB Z, HACHEM H, TOURBAH A, et al. 3D concrete printing:machine and mix design[J]. International Journal of Civil Engineering and Technology, 2015, 6:14-22.
|
[37] |
刘巧玲,杨钱荣,李雨航,等.一种3D打印建筑砂浆堆积性能测试装置:106568926A[P]. 2016-10-31.
|
[38] |
JOH C, LEE J, BUI T Q, et al. Buildability and mechanical properties of 3D printed concrete[J]. Materials, 2020, 13. DOI: 10.3390/ma13214919.
|
[39] |
李维红,常西栋,王乾,等.矿物掺合料对3D打印水泥基材料性能的影响[J].硅酸盐通报, 2020, 39(10):3101-3107.
|
[40] |
马国伟,柴艳龙,王里,等. 3D打印陶砂轻质混凝土的制备与力学性能测试[J].实验力学, 2020, 35(1):58-66.
|
[41] |
刘致远. 3D打印水泥基材料流变性能调控及力学性能表征[D].北京:中国建筑材料科学研究总院, 2019:41-52.
|
[42] |
ZHANG C, HOU Z Y, CHEN C, et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content[J]. Cement and Concrete Composites, 2019, 104:1-10.
|
[43] |
WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete:numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106:103-116.
|
[44] |
JAYATHILAKAGE R, RAJEEV P, SANJAYAN J. Yield stress criteria to assess the buildability of 3D concrete printing[J]. Construction and Building Materials, 2020, 240. DOI: 10.1016/j.conbuildmat.2019.117989.
|
[45] |
史庆轩,万胜木. 3D打印混凝土建造性能的量化模型研究[J].工业建筑. 2021, 51(6):16-23.
|
[46] |
SUIKER A S J. Mechanical performance of wall structures in 3D printing processes:theory, design tools and experiments[J]. International Journal of Mechanical Sciences, 2018, 137:145-170.
|
[47] |
SUIKER A S J, WOLFS R J M, LUCAS S M, et al. Elastic buckling and plastic collapse during 3D concrete printing[J]. Cement and Concrete Research, 2020, 135. DOI: 10.1016/j.cemconres.2020.106016.
|
[48] |
ZHANG Y, ZHANG Y S, SHE W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete[J]. Construction and Building Materials, 2019, 201:278-285.
|
[49] |
PANDA B, PAUL S C, TAN M J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209:146-149.
|
[50] |
WOLFS R J M, BOS F P, SALET T A M. Hardened properties of 3D printed concrete:the influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research, 2019, 119:132-140.
|
[51] |
PAUL S C, TAY Y W D, PANDA B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction[J]. Archives of Civil and Mechanical Engineering, 2018, 18:311-319.
|
[52] |
RAHUL A V, SANTHANAM M, MEENA H, et al. Mechanical characterization of 3D printable concrete[J]. Construction and Building Materials, 2019, 227. DOI: 10.1016/j.conbuildmat.2019.116710.
|
[53] |
SANJAYAN J G, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Construction and Building Materials, 2018, 172:468-475.
|
[54] |
LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42:558-566.
|
[55] |
黎宝山,姚一鸣,鲁聪.挤出型3D打印混凝土力学性能研究进展[J].混凝土与水泥制品, 2021(3):1-6.
|
[56] |
ALCHAAR A S, AL-TAMIMI A K. Mechanical properties of 3D printed concrete in hot temperatures[J]. Construction and Building Materials, 2021, 266. DOI: 10.1016/j.conbuildmat.2020.120991.
|
[57] |
MA G W, LI Z J, WANG L, et al. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing[J]. Construction and Building Materials, 2019, 202:770-783.
|
[58] |
朱彬荣,潘金龙,周振鑫,等. 3D打印高延性水泥基复合材料的单轴受拉和受压行为[J].硅酸盐学报, 2021, 49(5):1-11.
|
[59] |
PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113:108-106.
|
[60] |
TAY Y W D, TING G H A, QIAN Y, et al. Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2019, 14. DOI: 10.1080/17452759.2018.1500420.
|
[61] |
李俊霖. 3D打印混凝土层间粘结性能及打印拱结构稳定性能分析[D].哈尔滨:哈尔滨工业大学, 2020:16-26.
|
[62] |
刘致远,王振地,王玲,等. 3D打印水泥净浆层间拉伸强度及层间剪切强度[J].硅酸盐学报, 2019, 47(5):648-652.
|
[63] |
BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion:a roadmap for research[J]. Cement and Concrete Research, 2018, 112:37-49.
|
[64] |
MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J]. Composites Part B, 2020, 200. DOI: 10.1016/j.compositesb.2020.108313.
|
[65] |
ZAREIYAN B, KHOSHNEVIS B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete[J]. Automation in Construction, 2017, 83:212-221.
|
[66] |
MARCHMENT T, SANJAYAN J, XIA M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials and Design, 2019, 169. DOI: 10.1016/j.matdes.2019.107684.
|
[67] |
HOSSEINIA E, ZAKERTABRIZIA M, KORAYEM A H, et al. A novel method to enhance the interlayer bonding of 3D printing concrete:an experimental and computational investigation[J]. Cement and Concrete Composites, 2019, 99:112-119.
|
[68] |
HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79:62-70.
|
[69] |
BOS F P, AHMED Z Y, JUTINOV E R, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete[J]. Materials, 2017, 10:1-22.
|
[70] |
MARCHMENT T, SANJAYAN J. Mesh reinforcing method for 3D concrete printing[J]. Automation in Construction, 2020, 109. DOI: 10.1016/j.autcon.2019.102992.
|
[71] |
LIM J H, PANDA B, PHAM Q C. Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement[J]. Construction and Building Materials, 2018, 178:32-41.
|
[72] |
ASSAAD J J, YASSIN A A, ALSAKKA F, et al. A modular approach for steel reinforcing of 3D printed concrete-preliminary study[J]. Sustainability, 2020, 12. DOI: 103390/su12104062.
|
[73] |
孙晓燕,叶柏兴,王海龙,等. 3D打印混凝土材料与结构增强技术研究进展[J].硅酸盐学报. 2021, 49(5):878-886.
|