Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Liu Zhiguo, Ba Hengjing. RESEARCH ON EVALUATION OF PERMEABILITY OF CONCRETE BY DICHLOROMETHANE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 66-67,28. doi: 10.13204/j.gyjz200506019
Citation: DONG Shier, YANG Bo, ZHANG Airong. Research on Ultimate Bearing Capacity of Cold-Formed Thin-Walled C-Section Steel Double-Limbed Closed Built-up Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 175-180,174. doi: 10.13204/j.gyjzG21070506

Research on Ultimate Bearing Capacity of Cold-Formed Thin-Walled C-Section Steel Double-Limbed Closed Built-up Columns

doi: 10.13204/j.gyjzG21070506
  • Received Date: 2021-07-05
  • In order to obtain the calculation formula of the ultimate bearing capacity of cold-formed thin-walled C-shaped steel double-limbed closed built-up columns, the line software CUFSM and the direct strength method DSM were used to calculate the ultimate bearing capacity of single-limbed cold-formed thin-walled C-shaped steel member. ABAQUS finite element analysis software was used to calculate the ultimate bearing capacity of cold-formed thin-walled C-shaped steel double-limbed closed built-up columns under axial compression. By comparing the ultimate bearing capacity of single-limb cold-formed thin-walled C-shaped steel members and cold-formed thin-walled C-shaped steel double-limbed closed built-up columns under different cross-sectional geometric parameters, the influence of each parameter on the combined effect coefficients of built-up columns was determined, as well as the relations between combined effect coefficients and two important parameters. The 1stopt fitting software was used to perform regression analysis on a large number of obtained combined effect values, and the combined effect coefficient simplified formula and ultimate bearing capacity calculation formula of cold-formed thin-walled C-shaped steel double-limbed closed built-up columns were established.
  • [1]
    WEI W Y, DON S E, WOLFORD A L. Golden anniversary of the AISI specification, recent research and developments in cold-formed steel design and construction[C]//Proceedings of the 13th International Specialty Conference on Cold-Formed Steel Structures. 1996.
    [2]
    WEI W Y. Cold-formed steel design[M]. New Jersey:Wiley, 2000.
    [3]
    尹稷华, 杨亚君. 新农村防灾、环境改善建设与薄壁轻钢建筑体系[J]. 住宅产业, 2012(11):57-59.
    [4]
    刘飞,李元齐,张继承.低层冷弯薄壁型钢结构抗震性能分析[J]. 长江大学学报(自然科学版), 2009, 6(1):91-95.
    [5]
    吴晓烽.C型截面冷弯薄壁型钢檩条的屈曲研究[D].宁波:宁波大学,2013.
    [6]
    薛发,刘定荣.冷弯薄壁型钢住宅体系及其在中国的应用和发展[J].建筑技术及设计, 2008(2):82-85.
    [7]
    中华人民共和国住房和城乡建设部.冷弯薄壁型钢结构技术规范:GB 50018-2002[S].北京:中国计划出版社,2002.
    [8]
    中华人民共和国住房和城乡建设部.低层冷弯薄壁型钢房屋建筑技术规程:JGJ 227-2011[S]. 北京:中国建筑工业出版社, 2011.
    [9]
    AISI. Commentary on the standard for cold-formed steel framing-prescriptive method for one and two family dwellings[S]. Washington D C:American Iron and Steel Institute, 2003.
    [10]
    李方涛.冷弯薄壁型钢双肢抱合箱形截面柱轴向受力性能研究[D].西安:长安大学,2015.
    [11]
    GREGORY K P. An investigation of the effects of fastener spacing in build-up cold-formed steel compression members[D].Canada:Dalhousie University, 2003.
    [12]
    YOUNG B,ASCE M, CHEN J. Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134(5):727-737.
    [13]
    GEORGIEVA I, SCHUEREMANS L, PYL L. Experimental investigation of built-up double-Z members in bending and compression[J]. Thin-Walled Structures, 2012,53(4):48-57.
    [14]
    GEORGIEVA I, SCHUEREMANS L, VANDEWALLE L, et al. Numerical study of built-up double-Z members in bending and compression[J]. Thin-Walled Structures,2012,60(11):85-97.
    [15]
    罗鑫,周天华.冷弯薄壁型钢双肢闭合截面拼合立柱轴压性能有限元分析[J].施工技术,2015,44(增刊):535-539.
    [16]
    聂少锋,周天华,周绪红,等.双肢冷弯薄壁型钢拼合箱形柱受压试验研究与有限元分析[J].建筑结构学报,2017,38(10):10-20.
    [17]
    NAS. Design of cold-formed steel structural members using the direct strength method[S]. Washington D C:American Iron and Steel Institute, 2004.
    [18]
    王春刚,壮南,张耀春,冷弯薄壁斜卷边槽钢轴压构件承载力计算的直接强度法研究[J].工程力学,2012, 29(3):75-82.
    [19]
    何保康,蒋路.冷弯薄壁型钢构件的直接强度法[J]. 建筑结构学报, 2007, 37(1):20-23.
    [20]
    AISI. North American specification for the design of cold-formed steelstructural members:AISI S100-2007[S]. Washington D.C:American Iron and Steel Institute, 2007.
    [21]
    李元齐,李英磊,王树坤,等.冷弯薄壁型钢双肢拼合构件轴压承载力研究[J].建筑结构学报,2014,35(12):104-113.
    [22]
    聂少锋,霍洋洋,周天华,等.冷弯薄壁型钢四肢拼合箱形柱偏压受力性能试验研究与数值分析[J].土木工程学报,2016,49(10):1-10.
    [23]
    聂少锋,周天华,周绪红,等.冷弯薄壁型钢四肢拼合箱形柱轴压性能试验[J].长安大学学报(自然科学版),2017,37(3):72-81.
    [24]
    王广.冷弯薄壁卷边槽钢受压畸变屈曲性能分析[D].杭州:浙江大学, 2007.
    [25]
    王士奇,董军.轴心受压冷成型钢厚壁钢构件非线性有限元分析[J].建筑结构, 2004(增刊):63-65.
    [26]
    李久宪,张丹,李方涛,等.冷弯薄壁型钢四肢双箱形拼合柱轴压性能有限元分析[J].施工技术,2014,43(增刊2):412-415.
    [27]
    ABDEL-RAHMAN N, SIVAKUMARRAN K S. Material properties models for analysis of cold-formed steel members[J].Journal of Structures Engineering, 1997,123(9):1135-1143.
    [28]
    王旭东.冷弯薄壁型钢六肢拼合截面立柱受压受力性能研究[D].西安:长安大学,2016.
    [29]
    聂少锋,周天华,周绪红,等.三肢冷弯薄壁型钢拼合双腔箱形柱受压性能试验研究与数值分析[J].东南大学学报(自然科学版),2019,49(1):25-33.
    [30]
    罗鑫.冷弯薄壁型钢双肢闭合截面拼合立柱受压受力性能研究[D].西安:长安大学,2016.
  • Relative Articles

    [1]XU Wenjing, HOU Xingmin, LI Junhai, WU Jinhao, LI Junming, WANG Feng. Stability Analysis of Masonry Air-Raid Shelters Based on the Unloading Arch Theory and Finite Element Simulations[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 240-245. doi: 10.3724/j.gyjzG22111905
    [2]LI Chunhua, HE Sheng, XIONG Anping. Eigenvalue Imperfection Modal Method for Controlling Vertical Geometric Imperfections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 175-179. doi: 10.13204/j.gyjzG21083004
    [3]ZHANG Beibei, WU Tingliang, WANG Yusong, JIN Mingchao. Stability Analysis on Foundation Treatment for a Transverse Karst Cave in Guiyang[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 133-139. doi: 10.13204/j.gyjzG21032405
    [4]HUANG Ming, LIU Jun. THE SAFETY MONITORING AND PROGNOSTIC SYSTEM OF SLOPE BASED ON PHM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 66-70,43. doi: 10.13204/j.gyjz202005011
    [5]YAN Renzhang, WAN Liyuan, ZHOU Jianting, WANG Shuai. STRUCTURAL DESIGN AND STABILITY ANALYSIS OF A COMPOSITE SPACE STRUCTURE COMPOSED OF CABLE-SUPPORTED ARCH TRUSS AND SINGLE-LAYER RETICULATED SHELL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 103-110. doi: 10.13204/j.gyjz202004019
    [6]SHENG Xueqing, WU Hao, DENG Yuebao. THE INFLUENCE OF DIFFERENT REINFORCEMENT METHODS ON THE STABILITY OF FILLED SLOPE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 60-65. doi: 10.13204/j.gyjz202004011
    [7]DIAO Yu, JIN Zhuangzhuang, HUANG Sheng, YANG Chao, ZHU Pengyu, BI Cheng, MA Aoyang. RESEARCH ON MECHANICS OF OBLIQUE-VERTICAL ALTERNATE PILES IN SLOPES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 91-96. doi: 10.13204/j.gyjzG20031006
    [8]Tong Genshu. A RESTUDY ON STABILITY OF STEEL BEAMS(Ⅲ):COMPARISON AMONG CODES AND RELIABILITY ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 162-168. doi: 10.13204/j.gyjz201403032
    [9]Wang Hui, Li Xiaoyan, Sun Qing, Xue Jianyang. EXPERIMENTAL RESEARCH ON OVERALL STABILITY BEARING CAPACITY OF HIGH STRENGTH STEEL TUBE COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 145-149. doi: 10.13204/j.gyjz2001411029
    [10]Liu Weiping, Fu Mingfu. GRADIENT DEPENDENT NONLOCAL FRICTION MODEL AND ITS APPLICATION IN MECHANICAL ANALYSIS OF BOLT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 114-117.
    [11]Zhu Fengbin, Miao Linchang, Gu Huanda, Lin Shuixian. SENSITIVITY ANALYSIS OF DESIGN PARAMETERS OF COMPOSITE SOIL NAILED WALL WITH BORED PILES IN DEEP EXCAVATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 77-83. doi: 10.13204/j.gyjz201311018
    [12]Nie lin, Yang Tao, Zhou Depei, Liu Yongjiang. ESTIMATE OF SLOPE DYNAMICAL STABILITY BASED ON EARTHQUAKE RESPONSE ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 82-86. doi: 10.13204/j.gyjz201211018
    [13]Lu Kunlin, Zhu Dayong. THE STATE OF THE ART IN THE LIMIT EQUILIBRIUM METHOD BY MODIFYING NORMAL STRESSES OVER SLIP SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 131-136,45. doi: 10.13204/j.gyjz201206028
    [14]Li Ran, Chu Xuesong, Li Liang, Yu Guangming. THE OPTIMIZATION PROBLEMS APPLICABLE TO SLOPE STABILITY ANALYSIS USING LIMIT EQUILIBRIUM METHOD[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 82-85,90. doi: 10.13204/j.gyjz201008019
    [15]Feng Jun, Jiang Nan, Zhou Depei. INFLUENCE OF ANGLE BETWEEN STRIKE OF SLOPE AND STRATA ON SLOPE STABILITY[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 76-79. doi: 10.13204/j.gyjz20081019
    [16]Deng Changgen, Zhu Wenmei. SIMPLIFIED BUCKLING ANALYSIS OF STEEL COMPRESSION MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 106-108122. doi: 10.13204/j.gyjz200803028
    [17]Li Liang. COMPARISON OF DIFFERENT PROCEDURES FOR SIMULATING SLIDING BODIES IN SLOPE STABILITY ANALYSIS BASED ON THREE-DIMENSIONAL LIMIT EQUILIBRIUM METHOD[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 62-66. doi: 10.13204/j.gyjz200807015
    [18]Cheng Caixia, Zhao Junhai, Wei Xueying. SOLUTION OF ULTIMATE LOAD FOR SLOPE BY UNIFIED SLIP LINE FIELD METHOD AND FINITE ELEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 33-35,46. doi: 10.13204/j.gyjz200510011
    [19]Yan Fuyou, Jia Xin, Yuan Yong. EXPERIMENTS ON THE BONDING BEHAVIOUR OF GFRP BOLTS WITH MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 59-60,97. doi: 10.13204/j.gyjz200412016
    [20]Chen Ting, Tong Genshu. ELASTOPLASTIC STABILITY OF TAPERED COMPRESSED MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 62-65,84. doi: 10.13204/j.gyjz200410019
  • Cited by

    Periodical cited type(10)

    1. 王升旭,苗吉军,刘家良,肖建庄,刘才玮,刘延春,赵玉亮,李文华. 高温水冷却后混凝土力学性能研究进展. 混凝土. 2024(06): 63-70+75 .
    2. 陈宗平,班茂根,周济. 冷却方式对高温后不同类型混凝土残余力学性能的影响研究. 实验力学. 2022(01): 52-62 .
    3. 王新,黄磊群,徐炜圣,莫琳琳,陈宗平. 冷却方式对高温后方钢管再生混凝土黏结滑移性能的影响对比. 混凝土. 2022(06): 33-39 .
    4. 苗生龙,李庆涛,赵园园,胡海波,刘玉田. 高温后掺纳米CaCO_3混凝土劈裂抗拉性能研究. 三峡大学学报(自然科学版). 2020(03): 68-72 .
    5. 陈宗平,周济. 高温喷水冷却后方与圆钢管高强混凝土界面黏结性能对比分析. 工业建筑. 2020(11): 145-152 . 本站查看
    6. 高经纬,马国伟,范立峰. 冷却方式对高温状态花岗岩裂隙分布特点的影响. 实验力学. 2019(03): 381-387 .
    7. 翟越,王思维,石蕴美,蒋文祺. 高温-水冷却对混凝土抗冲击性能影响试验研究. 工业建筑. 2017(07): 127-130+148 . 本站查看
    8. 马辉. 火灾后混凝土力学性能的影响因素. 四川水泥. 2017(10): 287+66 .
    9. 陈映贞,许肇峰,王勇平,鲁昌河. 高温(火灾)作用后混凝土残余强度统计分析. 混凝土与水泥制品. 2016(09): 1-5 .
    10. 刘威. 高温下和高温后混凝土力学性能的研究进展. 山西建筑. 2016(21): 61-63 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 87.6 %META: 87.6 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.9 %其他: 12.9 %San Lorenzo: 0.6 %San Lorenzo: 0.6 %东莞: 1.7 %东莞: 1.7 %北京: 3.4 %北京: 3.4 %十堰: 1.1 %十堰: 1.1 %南京: 1.1 %南京: 1.1 %南通: 1.1 %南通: 1.1 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 3.9 %天津: 3.9 %宣城: 0.6 %宣城: 0.6 %常州: 1.7 %常州: 1.7 %常德: 1.7 %常德: 1.7 %广州: 0.6 %广州: 0.6 %张家口: 1.7 %张家口: 1.7 %成都: 2.2 %成都: 2.2 %扬州: 2.8 %扬州: 2.8 %新乡: 3.9 %新乡: 3.9 %昆明: 1.1 %昆明: 1.1 %晋城: 0.6 %晋城: 0.6 %杭州: 3.4 %杭州: 3.4 %武威: 1.7 %武威: 1.7 %武汉: 1.7 %武汉: 1.7 %江门: 0.6 %江门: 0.6 %温州: 1.1 %温州: 1.1 %漯河: 4.5 %漯河: 4.5 %白银: 1.1 %白银: 1.1 %益阳: 1.1 %益阳: 1.1 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 8.4 %芒廷维尤: 8.4 %芝加哥: 2.2 %芝加哥: 2.2 %西宁: 16.3 %西宁: 16.3 %贵阳: 0.6 %贵阳: 0.6 %达州: 0.6 %达州: 0.6 %运城: 2.8 %运城: 2.8 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.7 %郑州: 1.7 %长沙: 3.4 %长沙: 3.4 %阜阳: 3.4 %阜阳: 3.4 %青岛: 1.1 %青岛: 1.1 %其他San Lorenzo东莞北京十堰南京南通嘉兴天津宣城常州常德广州张家口成都扬州新乡昆明晋城杭州武威武汉江门温州漯河白银益阳石家庄芒廷维尤芝加哥西宁贵阳达州运城邯郸郑州长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(5) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return