ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
Citation:
ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition[J]. INDUSTRIAL CONSTRUCTION , 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
Citation:
ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition[J]. INDUSTRIAL CONSTRUCTION , 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition
1. Central Research Institute of Building and Construction Co., Ltd., MCC Group, Beijing 100088, China;
2. Tsinghua University, Beijing 100084, China;
3. Tsinghua Innovation Center in Zhuhai, Zhuhai 519080, China;
4. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
Received Date: 2021-07-01
Available Online:
2023-07-01
Abstract
To investigate the vibration response characteristics of overhead transmission lines and the influence of icing and anti-vibration dampers, a typical long-span conductor was taken as the research object. The fluctuating wind model was established with the harmonic superposition method based on the theory of stochastic process, and then, the functional expression of natural wind load was obtained. The dynamic analysis of conductors was carried out by the general finite element software ANSYS. In the self-damping condition, the wind-induced vibration responses of bare conductor and ice-covered conductor were analyzed and compared. Finally, by simplifying the anti-vibration dampers as a spring vibrator, the dynamic response simulation was conducted on the system of ice-covered conductors and anti-vibration dampers, the effect of the multi-point centrally arranged dampers in controlling the vibration response of conductors was verified in both downwind and veritical wind directions.
References
[1]
张旺海. 覆冰架空导线振动数值仿真分析及实验研究[D]. 保定:华北电力大学, 2012.
[2]
陈昌隆, 陈佳昊, 张晨晟, 等. 基于ANSYS的输电导线找形方法研究与分析[J]. 安徽建筑, 2018, 24(5):102-104.
[3]
张旺海, 于建斌. 基于ANSYS的架空输电导线找形研究[J]. 电力建设, 2012, 33(2):32-35.
[4]
张喆. 覆冰导线动态气动力特性研究[D].天津:天津理工大学, 2014.
[5]
王璋奇, 赵星驰. 基于MATLAB/ANSYS的架空输电线脱冰仿真实验系统[J]. 实验技术与管理, 2019, 36(7):106-110.
[6]
黄欲成, 汪峰, 刘鸿琳. 张力对大跨越输电导线Bate阻尼线防振影响研究[J]. 防灾减灾工程学报, 2019, 39(5):869-878.
[7]
范昂. 高压输电塔线体系非线性振动特性分析[D]. 郑州:郑州大学, 2015.
[8]
中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009-2012[S]. 北京:中国建筑工业出版社, 2012.
[9]
中华人民共和国国家经济贸易委员会. 110~500 kV架空送电线路设计技术规程:DL/T 5092-1999[S]. 北京:中国电力出版社, 1999.
Relative Articles
[1] SHEN Yuekui, LI Yang, LIU Chendi, WANG Jiajia. Research on Wind Pressure Distribution of Truncated Ellipsoid Air-Supported Structure Considering Fluid-Solid Interaction and Fluctuating Wind Effect [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 120-126. doi: 10.13204/j.gyjzG21060710
[2] NIE Zhulin, OU Tong, XIN Zhiyong, ZHU Yong, WANG Dayang. OPTIMIZATION OF WIND VIBRATION RESPONSES OF BUILDING STRUCTURES PLANTED ARBORS ON ROOFS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 121-127. doi: 10.13204/j.gyjzG20050604
[3] XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
[4] HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
[9] Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
[10] Zhang Min. LINEAR OPTIMAL SEMI -ACTIVE CONTROL OF PULSATING WIND VIBRATION RESPONSE OF MULTIFUNCTIONAL VIBRATION -ABSORPTION MEGAFRAME STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(10): 33-37. doi: 10.13204/j.gyjz200710010
[11] Zhang Min. RANDOM ANALYSIS OF PULSATING WIND VIBRATION RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 40-45. doi: 10.13204/j.gyjz200706011
[12] Zhang Min. INSTANTANEOUS OPTIMAL SEMI-ACTIVE CONTROL OF PULSATING WIND VIBRATION RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION OF MEGAFRAME STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 33-37. doi: 10.13204/j.gyjz200603009
[13] Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
[14] Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
[15] Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
[16] Zhang Zengdang, Chen Shuifu. WIND-INDUCED VIBRATION RESPONSE ANALYSIS AND STRUCTURAL SCHEME APPRAISAL FOR A THREE-PIPE RC CHIMNEY [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 37-39. doi: 10.13204/j.gyjz200405012
Cited by Periodical cited type(4) 1. 高占波. 预应力钢绞线网加固腐蚀混凝土连续梁受力性能分析. 城市道桥与防洪. 2024(12): 227-231+237+26 . 2. 李澄. 某预应力连续梁桥项目静载试验分析. 交通科技与管理. 2023(02): 89-91 . 3. 梁玮. 预应力混凝土连续梁桥施工控制技术研究. 工程技术研究. 2023(13): 73-75 . 4. 詹宏伟. 预应力混凝土连续梁桥悬臂施工控制技术研究. 工程技术研究. 2023(24): 65-67 .
Other cited types(1)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 5 10 15 20
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 10.0 % FULLTEXT : 10.0 % META : 84.4 % META : 84.4 % PDF : 5.6 % PDF : 5.6 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.9 % 其他 : 8.9 % 上海 : 8.9 % 上海 : 8.9 % 上饶 : 1.1 % 上饶 : 1.1 % 临汾 : 0.6 % 临汾 : 0.6 % 北京 : 4.4 % 北京 : 4.4 % 南京 : 1.7 % 南京 : 1.7 % 哈尔滨 : 0.6 % 哈尔滨 : 0.6 % 大连 : 0.6 % 大连 : 0.6 % 天津 : 3.9 % 天津 : 3.9 % 宁波 : 0.6 % 宁波 : 0.6 % 宜昌 : 0.6 % 宜昌 : 0.6 % 宣城 : 0.6 % 宣城 : 0.6 % 常州 : 0.6 % 常州 : 0.6 % 常德 : 1.1 % 常德 : 1.1 % 开封 : 0.6 % 开封 : 0.6 % 张家口 : 3.3 % 张家口 : 3.3 % 成都 : 1.7 % 成都 : 1.7 % 扬州 : 1.1 % 扬州 : 1.1 % 新乡 : 0.6 % 新乡 : 0.6 % 杭州 : 1.1 % 杭州 : 1.1 % 武汉 : 1.7 % 武汉 : 1.7 % 海口 : 0.6 % 海口 : 0.6 % 温州 : 0.6 % 温州 : 0.6 % 湖州 : 0.6 % 湖州 : 0.6 % 漯河 : 8.3 % 漯河 : 8.3 % 烟台 : 0.6 % 烟台 : 0.6 % 芒廷维尤 : 15.6 % 芒廷维尤 : 15.6 % 芝加哥 : 0.6 % 芝加哥 : 0.6 % 西宁 : 10.6 % 西宁 : 10.6 % 西安 : 1.7 % 西安 : 1.7 % 贵阳 : 1.1 % 贵阳 : 1.1 % 赤峰 : 3.3 % 赤峰 : 3.3 % 运城 : 3.9 % 运城 : 3.9 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 3.9 % 郑州 : 3.9 % 重庆 : 1.1 % 重庆 : 1.1 % 银川 : 0.6 % 银川 : 0.6 % 镇江 : 0.6 % 镇江 : 0.6 % 长春 : 0.6 % 长春 : 0.6 % 长沙 : 1.1 % 长沙 : 1.1 % 青岛 : 0.6 % 青岛 : 0.6 % 其他 上海 上饶 临汾 北京 南京 哈尔滨 大连 天津 宁波 宜昌 宣城 常州 常德 开封 张家口 成都 扬州 新乡 杭州 武汉 海口 温州 湖州 漯河 烟台 芒廷维尤 芝加哥 西宁 西安 贵阳 赤峰 运城 邯郸 郑州 重庆 银川 镇江 长春 长沙 青岛