Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
JIN Qinming, CHENG Guozhong, LI Dongsheng, WANG Cong, CHEN Shasha, WANG Ruirong, BI Jinggang. Intelligent Deformation Monitoring for Lifting Space Frames Based on Point Cloud Data[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 209-215. doi: 10.13204/j.gyjzG21061811
Citation: JIN Qinming, CHENG Guozhong, LI Dongsheng, WANG Cong, CHEN Shasha, WANG Ruirong, BI Jinggang. Intelligent Deformation Monitoring for Lifting Space Frames Based on Point Cloud Data[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 209-215. doi: 10.13204/j.gyjzG21061811

Intelligent Deformation Monitoring for Lifting Space Frames Based on Point Cloud Data

doi: 10.13204/j.gyjzG21061811
  • Received Date: 2021-06-18
    Available Online: 2023-03-22
  • Deformation monitoring is one of the most essential means of ensuring construction safety for lifting space frames. Current traditional methods only enable deformation monitoring at local points, but not for the whole structure. Three-dimensional (3D) laser scanning technology can capture accurate point clouds of as-built structures through full-coverage scanning, thus providing a innovative solution to the above issue. To this end, the research on intelligent deformation monitoring for lifting space frames based on point cloud data, including point cloud data preprocessing, non-rigid matching of point clouds and lifting deformation visualization, was carried out based on a practical engineering project, namely Luzhou Railway Station. Based on clustering algorithms, random sample consensus, graph structural methods and orthogonal procrustes analysis, a non-rigid matching algorithm integrating intelligent sphere positioning, coarse sphere matching, non-rigid sphere matching was proposed for the non-rigid matching of point clouds of space frames before and after lifting. The results showed that the proposed intelligent deformation monitoring approach based on point cloud data was efficient, comprehensive and practical.
  • loading
  • [1]
    董石麟. 我国大跨度空间钢结构的发展与展望[J]. 空间结构, 2000, 6(2):3-13.
    [2]
    翁凯. 大跨度钢管桁架结构的施工技术研究[D]. 天津:天津大学, 2012.
    [3]
    陈晋中, 郝林山. 高层与大跨结构施工技术[M]. 北京:机械工业出版社, 2004.
    [4]
    蔡俊. 大跨度钢网架结构整体提升施工关键技术应用研究[D]. 广州:华南理工大学, 2016.
    [5]
    季克建. 基于BIM技术的网架液压提升施工技术[J]. 施工技术, 2019, 48(10):92-95.
    [6]
    雷素素, 刘宇飞, 段先军, 等. 复杂大跨空间钢结构施工过程综合监测技术研究[J]. 工程力学, 2018, 35(12):203-211.
    [7]
    MA Z, LIU S. A review of 3D reconstruction techniques in civil engineering and their applications[J]. Advanced Engineering Informatics, 2018, 37:163-174.
    [8]
    WANG Q, KIM M K. Applications of 3D point cloud data in the construction industry:a fifteen-year review from 2004 to 2018[J].Advanced Engineering Informatics, 2019, 39:306-319.
    [9]
    WU Z, ZENG Y, LI D, et al. High-volume point cloud data simplification based on decomposed graph filtering[J]. Automation in Construction, 2021, 129, 103815.
    [10]
    BROWN B J, RUSINKIEWICZ S. Global non-rigid alignment of 3-D scans[J]. ACM Transactions on Graphics, 2007, 26(3):21.
    [11]
    BENTLEY J L, FRIEDMAN J H. Data structures for range searching[J]. ACM Computing Surveys (CSUR), 1979, 11(4):397-409.
    [12]
    ALTMAN N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3):175-185.
    [13]
    BLOMLEY R, WEINMANN M, LEITLOFF J, et al. Shape distribution features for point cloud analysis-a geometric histogram approach on multiple scales[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 2(3):9.
    [14]
    ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Knowledge Discovery and Data Mining. 1996, 96(34):226-231.
    [15]
    FISCHLER M A, BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun. ACM, 1981, 24(6):381-395.
    [16]
    AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3):1-10.
    [17]
    LUXBURG ULRIKE V. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416.
    [18]
    HAGBERG A, SWART P, S CHULT D. Exploring network structure, dynamics, and function using NetworkX[R]. Los Alamos, NM (United States):Los Alamos National Lab.(LANL), 2008.
    [19]
    WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return