Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
HE Shaohua, LI Xuming, QIU Yitao, WANG Yi. Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 164-170,226. doi: 10.13204/j.gyjzG21061808
Citation: HE Shaohua, LI Xuming, QIU Yitao, WANG Yi. Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 164-170,226. doi: 10.13204/j.gyjzG21061808

Experimental Research on Mix Proportion and Compressive Size Effect of ECC in the Hygrothermal Curing Environment in South China

doi: 10.13204/j.gyjzG21061808
  • Received Date: 2021-06-18
  • In order to study the mix proportion and compression size effect of engineered cementitious composites (ECC) under hygrothermal curing environment with average relative humidity of 80% and daytime average temperature of 30 ℃ in spring and summer, material tests on 108 specimens in 2 categories involving variables of fly ash, polyvinyl alahol fiber (PVA) fibers, curing environment, and geometrical dimensions were conducted. Based on the experimental results, favorable mix proportions and size effect coefficients of the ECC under the hygrothermal curing environment were obtained. The results indicated that the compression, shearing, and tensile performance of ECC was determined by the amount of PVA fibers, and the fly ash contributed to the shear strength of ECC, but reduced its tensile strength. Under the hygrothermal curing environment of South China, the ECC mix proportion with 35% fly ash and 1.0% PVC fibers had the most favorable mechanical properties, and the size effect coefficients for cubic and prism strengths of the ECC were fcu70.7fcu100fcu150=0.93∶1.00∶0.78 and fc70.7fc100fc150=0.96∶1.00∶0.93, respectively. The temperature and humidity had obvious size effect on the prism and cube specimen with the cross section of 70.7 mm side length.
  • loading
  • [1]
    LI V C,LEUNG C K Y.Steady state and multiple cracking of short random fiber composites[J].Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264.
    [2]
    LI V C.On engineered cementitious composites (ECC) a review of the material and its applications[J].Journal of Advanced Concrete Technology,2003,1(3):215-230.
    [3]
    TURK K,NEHDI M L.Flexural toughness of sustainable ECC with high-volume substitution of cement and silica sand[J].Construction and Building Materials,2021,270.https://doi.org/10.1016/j.conbuildmat.2020.121438.
    [4]
    张志刚,张仁毅,张沛,等.可自修复的高延性混凝土(ECC)在机场道面的适用性分析[J].重庆大学学报,2021,44(1):97-105.
    [5]
    王衍.高韧性纤维增强水泥基复合材料物理力学性能试验研究[D].哈尔滨:哈尔滨工业大学,2016.
    [6]
    邓明科,秦萌,梁兴文.高延性纤维混凝土抗压性能试验研究[J].工业建筑,2015,45(4):120-126.
    [7]
    BEUSHAUSEN H,GILLMER M,ALEXANDER M.The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J].Cement& Concrete Composite,2014,52:73-80.
    [8]
    郭寅川,黄忠财,王文真,等.湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J].建筑材料学报,2022,25(1):16-23.
    [9]
    胡春红,高艳娥,丁万聪.超高韧性水泥基复合材料受压性能试验研究[J].建筑结构学报,2013,34(12):128-132

    ,154.
    [10]
    梁济丰,吕磊,余晓青.聚乙烯醇纤维增强水泥基复合材料力学性能试验研究[J].混凝土与水泥制品,2013(11):48-51.
    [11]
    王振波,韩宇栋.高延性水泥基材料高温力学性能研究进展[J].三峡大学学报(自然科学版),2019,41(5):65-69.
    [12]
    DANG J T,HAO J,DU Z H.Effect of superabsorbent polymer on the properties of concrete[J].Polymers,2017,9:672.https://doi.org/10.33p0/polym9120672.
    [13]
    GAO S L,HU G H.Experimental study on biaxial dynamic compressive properties of ECC[J].Materials,2021,14.https://doi.org/10.3390/ma14051257.
    [14]
    WU H L,YU J,DU Y J,et al.Mechanical performance of MgO-doped engineered cementitious composites (ECC)[J].Cement and Concrete Composites,2021,115.https://doi.org/10.1016/j.cemconcomp.2020.103857.
    [15]
    NGUYEN H H,CHOI J I,PARK S E,et al.Autogenous healing of high strength engineered cementitious composites (ECC) using calcium-containing binders[J].Construction and Building Materials,2020,265(30).https://doi.org/10.1016/j.conbuildmat.2020.120857.
    [16]
    何淅淅,甘甜.ECC抗压强度及其尺寸效应的试验研究[J].建筑技术,2019,50(2):113-116.
    [17]
    邓明科,常云涛,梁兴文,等.高延性水泥基复合材料抗压强度尺寸效应的正交试验研究[J].工业建筑,2013,43(7):80-85.
    [18]
    李雪阳,江世永,飞渭,等.高韧性水泥基复合材料强度尺寸效应试验研究与正交分析[J].中国材料进展,2017,36(6):473-478.
    [19]
    朱长书,孙林柱,王雨,等.PVA纤维增强水泥基材料尺寸效应及相关性能研究[J].混凝土与水泥制品,2015(12):58-61.
    [20]
    李庆华,周宝民,黄博滔,等.超高韧性水泥基复合材料抗压性能的尺寸效应研究[J].水利学报,2015,46(2):174-182.
    [21]
    秦萌.高延性纤维混凝土受压力学性能试验研究[D].西安:西安建筑科技大学,2014.
    [22]
    王晶.高延性水泥基复合材料力学性能试验研究[D].西安:西安建筑科技大学,2013.
    [23]
    黄可,周旭.PVA-ECC单轴抗压试验及本构关系[J].四川建筑科学研究,2020(4):75-81.
    [24]
    于浩.高延性混凝土基本力学性能与弯曲韧性的尺寸效应研究[D].西安:西安建筑科技大学,2018.
    [25]
    FISCHER G.Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions[D].Michigan:University of Michigan,2002:40.
    [26]
    李晓琴,周旭,李世华.粉煤灰掺量对PVA-ECC性能的影响[J].硅酸盐通报,2020,39(12):3783-3790.
    [27]
    刘从亮,毕远志,华渊.高掺量粉煤灰PVA-ECC的力学性能研究及粉煤灰作用机理分析[J].硅酸盐通报,2017,36(11):3739-3744.
    [28]
    李可,喻鹏,刘伟康,等.工程水泥基复合材料受压性能及应力-应变关系研究[J].工业建筑,2020,50(3):172-177.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (122) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return