Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QIN Weihong, WANG Shuliang, HUI Zhuo, JIE Peng, LI Yunjie. TENSIONING INFLUENCE COEFFICIENT OF CABLE DOME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 1-8. doi: 10.13204/j.gyjzG21042502
Citation: QIN Weihong, WANG Shuliang, HUI Zhuo, JIE Peng, LI Yunjie. TENSIONING INFLUENCE COEFFICIENT OF CABLE DOME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 1-8. doi: 10.13204/j.gyjzG21042502

TENSIONING INFLUENCE COEFFICIENT OF CABLE DOME STRUCTURES

doi: 10.13204/j.gyjzG21042502
  • Received Date: 2021-04-25
    Available Online: 2022-02-21
  • Carbon fiber materials have the advantages of light weight, high strength, excellent corrosion resistance and good durability. The carbon fiber reinforced polymen (CFRP) cable dome structure can achieve a long span than the steel cable dome structures do. The prestress level of a cable dome has significant influences on the structural forces and stiffness, so it is necessary to ensure the effective prestress of the members after the tensioning is completed. In this paper, the tensioning influence coefficient of cable dome structures for calculating the tensioning value of active cables was proposed. Based on deformation coordination conditions and the principle of virtual work, the expression of the tensioning influence coefficient of the cable dome structures was derived, and the accuracy of the tensioning influence coefficient was verified by the model test of CFRP cable dome and finite element analysis. In addition, the development law of prestress and vertical displacement of connections under three tensioning schemes were analyzed and discussed, and the selection principle of active cables was proposed.
  • [1]
    CALLADINE C R, PELLEGRINO S.First-Order Infinitesimal Mechanisms[J].International Journal of Solids and Structures, 1991, 27(4):505-515.
    [2]
    袁行飞, 董石麟.索穹顶结构整体可行预应力概念及其应用[J].土木工程学报, 2001, 34(2):33-37.
    [3]
    姜正荣, 张子健, 石开荣, 等.Kiewitt型索穹顶结构的找力分析方法研究[J].华南理工大学学报, 2019, 47(5):103-109.
    [4]
    YE J H, FENG R Q, KAN Y.Simulation of Construction Shape-Forming Process of Cable Domes[J].Technological Sciences, 2012, 55(1):101-116.
    [5]
    CASTRO G, LEVY M P.Analysis of the Georgia Dome Cable Roof[C]//Computing in Civil Engineering and Geographic Information Systems Symposium, ASCE.1992:566-573.
    [6]
    CHEN L M, GAO W F, GAO Z C, et al.Robustness Analysis of a Flexible Cable-Strut Tensile Structure[J].International Journal of Steel Structures, 2020, 20(5):1755-1764.
    [7]
    ZHU M L, DONG S L, YUAN X F.Failure Analysis of a Cable Dome Due to Cable Slack or Rupture[J].Advances in Structural Engineering, 2013, 16(2):259-271.
    [8]
    YAMAGUCHI I.A Study on the Mechanism and Structural Behaviors of Cable Dome[C]//Proceedings of International Colloquium on Space Structures for Sports Buildings.1987:534-549.
    [9]
    GASPARINI D A, PERDILKARIS P C, KANJ N.Dynamic and Static Behavior of Cable Dome Model[J].Structural Engineering, ASCE, 1989, 115(2):363-381.
    [10]
    郭佳民, 董石麟.弦支穹顶施工张拉的理论分析与试验研究[J].土木工程学报, 2011, 44(2):65-71.
    [11]
    陈志华, 李毅, 闫翔宇, 等.一种索穹顶结构的新型张拉施工成形方法的试验研究与模拟分析[J].空间结构, 2019, 25(3):51-59.
    [12]
    董石麟, 袁行飞, 赵宝军, 等.索穹顶结构多种预应力张拉施工方法的全过程分析[J].空间结构, 2007, 13(1):3-14.
    [13]
    陈联盟, 董石麟, 袁行飞.索穹顶结构优化设计[J].科技通报, 2006, 22(1):84-89.
    [14]
    张爱林, 刘学春, 李健, 等.大跨度索穹顶结构模型静力试验研究[J].建筑结构学报, 2012, 33(4):54-59.
    [15]
    罗斌, 丁明珉, 潘杰, 等.三铰拉梁式肋环型索穹顶结构受力性能研究[J].建筑结构学报, 2016, 37(11):61-67.
    [16]
    向新岸, 冯远, 董石麟.一种索穹顶结构初始预应力分布确定的新方法:预载回弹法[J].工程力学, 2019, 36(2):45-52.
  • Relative Articles

    [2]Deng Langni, Zhao Simin, Liao Ling, Yu Zhaohang, Ji Shuai. STUDY OF PRESTRESS LOSS OF STEEL STRUCTURE STRENGHTHENED WITH PRESTRESS CFRP PLATES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 147-150. doi: 10.13204/j.gyjz201402031
    [3]Li Zhibing. ANALYSIS OF STRESS LOSS OF PRESTRESSED CFRP PLATE STRENGTHENED BRIDGE STRUCTURE CAUSED DUE TO TEMPERATURE DIFFERENCE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 162-165.
    [4]Deng Lang-ni, Zhang Peng, Yang Fan, Kang Kan. STUDY ON PRESTRESS LOSS OF CONCRETE STRUCTURE STRENGTHENED WITH PRESTRESSED CFRP PLATES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 71-74. doi: 10.13204/j.gyjz201209016
    [5]Wang Zuohu, Du Xiuli, Liu Jingbo. STUDIES ON PRESTRESSING LOSS OF CONCRETE BEAMS PRESTRESSED WITH CFRP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 29-32. doi: 10.13204/j.gyjz201110007
    [6]Yang Yong-xin, Li Qing-wei, Yue Qing-rui. EXPERIMENTAL RESEARCH ON PRESTRESS LOSS IN TECHNIQUE OF CONCRETE STRUCTURE STRENGTHENED WITH PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 5-8,18. doi: 10.13204/j.gyjz200604002
    [7]Zhang Yuming, Meng Shaoping. STUDY ON SIMPLIFIED CALCULATION METHOD FOR SECONDARY MOMENT OF PRESTRESSED CONCRETE FRAME[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 44-46. doi: 10.13204/j.gyjz200603012
    [8]Wang Xiao-hui, Zhang Shu-lu, Xue Wei-chen. CACULATION METHOD FOR PRESTRESSING LOSS OF BONDED CFRP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 23-25. doi: 10.13204/j.gyjz200604007
    [9]Cai Jiangyong. IMPROVING SUGGESTION ON CALCULATION METHOD OF FRICTION LOSS IN PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 94-95,75. doi: 10.13204/j.gyjz200404029
    [10]Xiong Xueyu, Gu Wei, Lei Liying. THE EVALUATION OF PRESTRESSING LOSS IN EXTERNALLY PRESTRESSED CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 16-19. doi: 10.13204/j.gyjz200407004
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0300.511.522.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.0 %FULLTEXT: 19.0 %META: 81.0 %META: 81.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.5 %其他: 9.5 %丽水: 2.4 %丽水: 2.4 %北京: 40.5 %北京: 40.5 %台州: 2.4 %台州: 2.4 %天津: 2.4 %天津: 2.4 %张家口: 9.5 %张家口: 9.5 %杭州: 2.4 %杭州: 2.4 %芒廷维尤: 21.4 %芒廷维尤: 21.4 %西宁: 9.5 %西宁: 9.5 %其他丽水北京台州天津张家口杭州芒廷维尤西宁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (232) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return