Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Chunsen, LI Ruisong, XING Min, ZHUANG Liangdong, NIE Xin, ZOU Yan. Seismic Performance Analysis of Steel-Concrete Composite Structural System for Rail Transit Co-Construction Projects[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 96-101. doi: 10.3724/j.gyjzG23082210
Citation: HUANG Min, DUAN Jingmin, MAO Qingchao, WANG Jiakai. SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 39-46,63. doi: 10.13204/j.gyjzG21040603

SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS

doi: 10.13204/j.gyjzG21040603
  • Received Date: 2021-04-06
    Available Online: 2021-11-11
  • To study seismic responses of twin tunnels with different lining stiffness, the seismic responses of twin tunnels with different lining stiffness was calculated and analyzed by the wave theory and combined with numerical calculation methods, taking the Leboguolaji tunnel of the Yalu Expressway as the background. The wave scattering theory was used to analyze the series solutions of dynamic stress coefficients for circular linings under the action of plane P-wave. The wave analysis results showed that the dynamic stress coefficient of circular linings for twin tunnels had important relation with the distance between twin tunnels, lining stiffness and P-wave frequency. The smaller the distance between the twin tunnels and the larger the lining stiffness, the larger the dynamic stress coefficient of the twin tunnels linings.The higher the plane P-wave frequency, the smaller the dynamic stress coefficient of the twin tunnel linings. Based on FLAC3D analysis software, the analysis model of numerical seismic responses for twin tunnels in mountains was constructed. The calculation results showed that the seismic responses of the tunnel structure with the rigid lining was significantly higher than that of the flexible lining, which indicated that the flexible lining could weaken the seismic dynamic responses of tunnels and had a certain shock absorption effect, but the seismic displacement of the flexible lining was higher than that of the rigid lining. The numerical results were in good agreements with the wave theory.
  • [1]
    潘昌实.隧道及地下结构物抗震问题的研究概况[J]. 世界隧道, 1996(5):7-16.
    [2]
    HIROOMI I. Damage and Restoration of Daikai Station of Kobe Rapid Transit Railway[J]. Japanese Railway Engineering, 1997(137):24-27.
    [3]
    MASARU T.Damage Done by the Great Earthquake Disaster of the Hanshin-Awaji District to the Kobe Municipal Subway System and Restoration Works of the Damage[J]. Japanese Railway Engineering, 1997(137):19-23.
    [4]
    崔光耀, 伍修刚, 王明年, 等.汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2):9-16.
    [5]
    朱永全. 109号隧道地震灾害与加固处理的思考[J]. 国防交通工程与技术, 2008(4):1-4.
    [6]
    中华人民共和国交通运输部.公路工程抗震规范:JTG B02-2013[S]. 北京:人民交通出版社, 2014.
    [7]
    中华人民共和国建设部.铁路工程抗震设计规范:GB 50111-2006[S]. 北京:中国铁道出版社, 2006.
    [8]
    中华人民共和国交通运输部.公路隧道设计规范:JTG 3370.1-2018[S]. 北京:人民交通出版社, 2019.
    [9]
    汪树华, 高波, 王英学, 等. 高烈度地震区山岭隧道动力响应规律及抗震措施分析研究[J]. 现代隧道技术, 2013, 50(5):60-67

    , 74.
    [10]
    江学良, 连鹏远, 杨慧, 等.浅埋偏压小净距隧道大型振动台实验研究[J]. 应用力学学报, 2017, 34(3):456-463.
    [11]
    王泽军, 陈铁林, 崔光耀, 等. 强震区隧道洞口软硬岩交接段围岩注浆抗震措施效果分析[J]. 中国地质灾害与防治学报, 2018, 29(4):96-102.
    [12]
    崔光耀, 王李斌, 王明年, 等. 强震区隧道软岩洞口段刚柔并济抗减震措施模型试验研究[J]. 振动工程学报, 2019, 32(1):29-36.
    [13]
    崔光耀, 王雪来, 王明年. 隧道软岩洞口段纤维混凝土衬砌抗震性能研究[J]. 振动、测试与诊断.2020, 40(4):650-655

    , 819.
    [14]
    任磊, 牛斌, 郭婷, 等. 柔性比对隧道地震动力响应影响研究[J]. 现代隧道技术, 2020, 57(4):67-73.
    [15]
    丁祖德, 资昊, 计霞飞, 等.考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020, 39(3):581-592.
    [16]
    皇民.浅埋双洞隧道地震动力响应研究[D]. 成都:西南交通大学, 2009.
    [17]
    PAO Y H, MOW C C. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M]. New York:Crane, Russak & Company Inc, 1973.
    [18]
    LEE V W. On Deformation Near Circular Underground Cavity Subjected to Incident Plane SH Waves[C]//Proceedings of the Application of Computer Methods in Engineering Conference. 1977:951-962.
    [19]
    LEE V W, TRIFUNAC M D. Response of Tunnels to Incident SH-Waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105:643-659.
    [20]
    LEE V W, KARL J. Diffraction of SV Waves by Underground, Circular, Cylindrical Cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11:445-456.
    [21]
    LEE V W, KARL J. On Deformation Near a Circular Underground Cavity Subjected to Incident Plane P Waves[J]. European Journal of Earthquake Engineering, 1993(1):29-36.
    [22]
    梁建文, 张浩, LEE V W. 平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6):815-819.
    [23]
    梁建文, 张浩, LEE V W.地下双洞室在SV波入射下动力响应问题解析解[J]. 振动工程学报, 2004, 17(2):132-140.
    [24]
    赵淑红.时频分析方法及其在地震波数据处理中的应用[D]. 西安:长安大学, 2003.
    [25]
    陈灯红, 彭刚, 姚艳华, 等.地震波时域数值优化研究及应用[J]. 世界地震工程, 2008, 24(4):130-135.
  • Relative Articles

    [1]FENG Fei, FU Yanqing, CHANG Hailin, LI Jie, ZENG Zhouyu, LI Wei. Advances in Preparation and Welding Techniques of Stainless Steel Clad Plates[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 71-89. doi: 10.3724/j.gyjzG24013002
    [2]WANG Xinping, LI Zhiqiang, ZHU Xiaodong, MENG Chunling, SHU Qianjin, YUAN Guanglin, LI Huipeng. Research on Surface Deformation Resistance of Split-Type Protective Plates for Transmission Towers with High-Low Legs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 196-206,233. doi: 10.13204/j.gyjzG23071406
    [3]ZHANG Hongjie, LUO Kewei, LI Yangsen, WENG Lanxi. Collapse Analysis of a 500 kV Transmission Tower Under the Combined Action of Typhoon and Microtopography[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 29-34,93. doi: 10.13204/j.gyjzG22070403
    [4]YANG Fengli, SHAO Shuai. Calculation Method of Wind Loads Acting on Transmission Towers Based on Drag Coefficients of Single Members[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 16-21. doi: 10.13204/j.gyjzG21081101
    [5]LI Weinan, YANG Xiao, WANG Yuedong, SHANG Renjie, GUI Yufei, HOU Zhaoxin. APPLICATION OF COMPOSITE THERMAL ENCLOSURE WALLBOARD IN A PREFABRICATED STEEL STRUCTURE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 147-150,123. doi: 10.13204/j.gyjz202003025
    [6]Chen Zhihua. RESEARCH PROGRESS AND PROSPECT OF CABLE-SUPPORTED STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 1-9. doi: 10.13204/j.gyjz201508001
    [7]Du Shuting. ANALYSIS OF ENGINEERING APPLICATION OF COMPOSITE LIGHT-WEIGHT SHEARWALL THERMAL INSULATION SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 150-153. doi: 10.13204/j.gyjz201406033
    [8]Li Shujin, Xu Xiaoyu, Li Jianfen, Xu Zhengcheng. PREPARATION AND APPLICATION OF NON SHRINKAGE SELF COMPACTING CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 109-112. doi: 10.13204/j.gyjz2001412017
    [9]Qiu Linbo, Liu Yi, Hou Zhaoxin, Chen Shuirong, Chung Kwok-fai. STATE APPLICATION RESEARCH OF HIGH STRENGTH STEEL IN STEEL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 1-5. doi: 10.13204/j.gyjz201403003
    [10]Shen Liangfeng. APPLICATION OF THREE DIMENSIONAL COMPREHENSIVE PIPELINE DESIGN BASED ON BIM TECHNOLOGY IN THE SUBWAY STATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 163-166,159. doi: 10.13204/j.gyjz201306034
    [11]Chen Guo, Xiao Yan. EXPERIMENTAL STUDY AND ENGINEERING APPLICATION OF BAMBOO ROOF TRUSS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 69-74. doi: 10.13204/j.gyjz201308015
    [12]Shi Gang, Ban Huiyong, Shi Yongjiu, Wang Yuanqing. ENGINEERING APPLICATION AND RECENT RESEARCH PROGRESS ON HIGH STRENGTH STEEL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 1-7,61. doi: 10.13204/j.gyjz201201001
    [13]Chen Zhihua, Weng Kai, Liu Hongbo, Yan Renzhang, Bu Yidu. THE RESEARCH STATUS AND ENGINEERING APPLICATION OF STAINLESS STEEL ON SPACE GRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 55-62,54. doi: 10.13204/j.gyjz2011205009
    [14]Han Junke, Yang Jingbo, Yang Fengli, Li Zhenbao. STUDY ON BEARING CAPACITY OF REINFORCED AND STRENGTHENED TRANSMISSION TOWER[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 114-117,131. doi: 10.13204/j.gyjz201007028
    [15]Yan Xiangyu, Chen Zhihua, Liu Zhansheng. CONCEPTION AND APPLICATION OF CABLE-SUPPORTED BARREL VAULT STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 13-15,19. doi: 10.13204/j.gyjz201008004
    [16]Li Peixun. RESEARCH ON THE RETARD-BONDED PRESTRESSED TECHNIQUE AND DEVELOPMENT PROSPECTS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 1-5. doi: 10.13204/j.gyjz200811001
    [17]Gong Xisheng, Liu Jingliang, Zhou Jianfeng, Si Siyu. APPLICATION OF RETARD-BONDED PRESTRESSED TECHNIQUE IN PROJECT OF LIHONG ECOLOGY HOMELAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 28-30. doi: 10.13204/j.gyjz200811008
    [18]Guo Lei, Lu Tongwei, Gu Qiang, Liu Zhiguo. PROPERTIES AND ENGINEERING APPLICATIONS OF GROUTING MATERIAL PREPARED WITH HIGH -PERFORMANCE GROUTING ADMIXTURE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 93-96. doi: 10.13204/j.gyjz200709021
    [19]Hou Man, Nie Jianguo, Zhang Tianshen. APPLICATION OF STEEL_CONCRETE COMPOSITE BEAM IN STOREY_ADDING REHABILITATION AND STRENGTHENING OF A BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 87-89.
    [20]Yue Qingrui, Li Qingwei, Yang Yongxin. TECHNIQUE OF STRUCTURES STRENGTHENED WITH NEAR SURFACE MOUNTED FRP[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 1-4. doi: 10.13204/j.gyjz200404001
  • Cited by

    Periodical cited type(4)

    1. 王明俊,饶瑞,叶婉玲,苏梓僖. 基于HHT和RDT的结构运行模态参数识别方法. 工业建筑. 2024(05): 43-50 . 本站查看
    2. 刘义艳,代杰. 基于载波相位差分的电力铁塔塔身主材形变检测算法. 吉林大学学报(工学版). 2024(12): 3693-3698 .
    3. 李瑞峰. 计算机无线传感网数据传输研究. 光源与照明. 2023(01): 90-92 .
    4. 姚庆节. 基于STM32的暖通空调外机安装支撑件健康状态监测. 中国建筑金属结构. 2023(07): 13-15 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.4 %FULLTEXT: 14.4 %META: 84.8 %META: 84.8 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %China: 3.0 %China: 3.0 %United States: 1.5 %United States: 1.5 %[]: 0.8 %[]: 0.8 %北京: 6.8 %北京: 6.8 %南昌: 1.5 %南昌: 1.5 %台州: 0.8 %台州: 0.8 %大连: 0.8 %大连: 0.8 %宿州: 0.8 %宿州: 0.8 %常德: 1.5 %常德: 1.5 %张家口: 0.8 %张家口: 0.8 %扬州: 0.8 %扬州: 0.8 %无锡: 2.3 %无锡: 2.3 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %杭州: 0.8 %杭州: 0.8 %洛阳: 0.8 %洛阳: 0.8 %湖州: 1.5 %湖州: 1.5 %漯河: 2.3 %漯河: 2.3 %焦作: 1.5 %焦作: 1.5 %石家庄: 1.5 %石家庄: 1.5 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 0.8 %芝加哥: 0.8 %衢州: 0.8 %衢州: 0.8 %西宁: 32.6 %西宁: 32.6 %西雅图: 0.8 %西雅图: 0.8 %贵阳: 0.8 %贵阳: 0.8 %运城: 11.4 %运城: 11.4 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.5 %郑州: 1.5 %重庆: 0.8 %重庆: 0.8 %阳泉: 1.5 %阳泉: 1.5 %其他ChinaUnited States[]北京南昌台州大连宿州常德张家口扬州无锡晋城朝阳杭州洛阳湖州漯河焦作石家庄芒廷维尤芝加哥衢州西宁西雅图贵阳运城邯郸郑州重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(1) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return