Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 7
Nov.  2021
Turn off MathJax
Article Contents
HUANG Min, DUAN Jingmin, MAO Qingchao, WANG Jiakai. SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 39-46,63. doi: 10.13204/j.gyjzG21040603
Citation: HUANG Min, DUAN Jingmin, MAO Qingchao, WANG Jiakai. SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 39-46,63. doi: 10.13204/j.gyjzG21040603

SEISMIC DYNAMIC RESPONSE ANALYSIS OF TWIN TUNNELS WITH DIFFERENT LINING STIFFNESS IN MOUNTAINS

doi: 10.13204/j.gyjzG21040603
  • Received Date: 2021-04-06
    Available Online: 2021-11-11
  • To study seismic responses of twin tunnels with different lining stiffness, the seismic responses of twin tunnels with different lining stiffness was calculated and analyzed by the wave theory and combined with numerical calculation methods, taking the Leboguolaji tunnel of the Yalu Expressway as the background. The wave scattering theory was used to analyze the series solutions of dynamic stress coefficients for circular linings under the action of plane P-wave. The wave analysis results showed that the dynamic stress coefficient of circular linings for twin tunnels had important relation with the distance between twin tunnels, lining stiffness and P-wave frequency. The smaller the distance between the twin tunnels and the larger the lining stiffness, the larger the dynamic stress coefficient of the twin tunnels linings.The higher the plane P-wave frequency, the smaller the dynamic stress coefficient of the twin tunnel linings. Based on FLAC3D analysis software, the analysis model of numerical seismic responses for twin tunnels in mountains was constructed. The calculation results showed that the seismic responses of the tunnel structure with the rigid lining was significantly higher than that of the flexible lining, which indicated that the flexible lining could weaken the seismic dynamic responses of tunnels and had a certain shock absorption effect, but the seismic displacement of the flexible lining was higher than that of the rigid lining. The numerical results were in good agreements with the wave theory.
  • loading
  • [1]
    潘昌实.隧道及地下结构物抗震问题的研究概况[J]. 世界隧道, 1996(5):7-16.
    [2]
    HIROOMI I. Damage and Restoration of Daikai Station of Kobe Rapid Transit Railway[J]. Japanese Railway Engineering, 1997(137):24-27.
    [3]
    MASARU T.Damage Done by the Great Earthquake Disaster of the Hanshin-Awaji District to the Kobe Municipal Subway System and Restoration Works of the Damage[J]. Japanese Railway Engineering, 1997(137):19-23.
    [4]
    崔光耀, 伍修刚, 王明年, 等.汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2):9-16.
    [5]
    朱永全. 109号隧道地震灾害与加固处理的思考[J]. 国防交通工程与技术, 2008(4):1-4.
    [6]
    中华人民共和国交通运输部.公路工程抗震规范:JTG B02-2013[S]. 北京:人民交通出版社, 2014.
    [7]
    中华人民共和国建设部.铁路工程抗震设计规范:GB 50111-2006[S]. 北京:中国铁道出版社, 2006.
    [8]
    中华人民共和国交通运输部.公路隧道设计规范:JTG 3370.1-2018[S]. 北京:人民交通出版社, 2019.
    [9]
    汪树华, 高波, 王英学, 等. 高烈度地震区山岭隧道动力响应规律及抗震措施分析研究[J]. 现代隧道技术, 2013, 50(5):60-67

    , 74.
    [10]
    江学良, 连鹏远, 杨慧, 等.浅埋偏压小净距隧道大型振动台实验研究[J]. 应用力学学报, 2017, 34(3):456-463.
    [11]
    王泽军, 陈铁林, 崔光耀, 等. 强震区隧道洞口软硬岩交接段围岩注浆抗震措施效果分析[J]. 中国地质灾害与防治学报, 2018, 29(4):96-102.
    [12]
    崔光耀, 王李斌, 王明年, 等. 强震区隧道软岩洞口段刚柔并济抗减震措施模型试验研究[J]. 振动工程学报, 2019, 32(1):29-36.
    [13]
    崔光耀, 王雪来, 王明年. 隧道软岩洞口段纤维混凝土衬砌抗震性能研究[J]. 振动、测试与诊断.2020, 40(4):650-655

    , 819.
    [14]
    任磊, 牛斌, 郭婷, 等. 柔性比对隧道地震动力响应影响研究[J]. 现代隧道技术, 2020, 57(4):67-73.
    [15]
    丁祖德, 资昊, 计霞飞, 等.考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020, 39(3):581-592.
    [16]
    皇民.浅埋双洞隧道地震动力响应研究[D]. 成都:西南交通大学, 2009.
    [17]
    PAO Y H, MOW C C. Diffraction of Elastic Waves and Dynamic Stress Concentrations[M]. New York:Crane, Russak & Company Inc, 1973.
    [18]
    LEE V W. On Deformation Near Circular Underground Cavity Subjected to Incident Plane SH Waves[C]//Proceedings of the Application of Computer Methods in Engineering Conference. 1977:951-962.
    [19]
    LEE V W, TRIFUNAC M D. Response of Tunnels to Incident SH-Waves[J]. Journal of Engineering Mechanics, ASCE, 1979, 105:643-659.
    [20]
    LEE V W, KARL J. Diffraction of SV Waves by Underground, Circular, Cylindrical Cavities[J]. Soil Dynamics and Earthquake Engineering, 1992, 11:445-456.
    [21]
    LEE V W, KARL J. On Deformation Near a Circular Underground Cavity Subjected to Incident Plane P Waves[J]. European Journal of Earthquake Engineering, 1993(1):29-36.
    [22]
    梁建文, 张浩, LEE V W. 平面P波入射下地下洞室群动应力集中问题解析解[J]. 岩土工程学报, 2004, 26(6):815-819.
    [23]
    梁建文, 张浩, LEE V W.地下双洞室在SV波入射下动力响应问题解析解[J]. 振动工程学报, 2004, 17(2):132-140.
    [24]
    赵淑红.时频分析方法及其在地震波数据处理中的应用[D]. 西安:长安大学, 2003.
    [25]
    陈灯红, 彭刚, 姚艳华, 等.地震波时域数值优化研究及应用[J]. 世界地震工程, 2008, 24(4):130-135.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return