Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Chen Aoyi, Zhang Zhaoyi, Wang Hui, Yang Zhiyan, Zhang Jiaqi. CONSTRUCTION INDUSTRIALIZATION AND GREEN MODULE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 108-111. doi: 10.13204/j.gyjz201406024
Citation: CHEN Youliang, XIAO Peng, DU Xi, WANG Suran, R. AZZAM. A Damage Constitutive Model for Rock Based on Weibull Distribution Under Coupling Action of Temperature and Confining Pressure[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 160-167. doi: 10.13204/j.gyjzG21030203

A Damage Constitutive Model for Rock Based on Weibull Distribution Under Coupling Action of Temperature and Confining Pressure

doi: 10.13204/j.gyjzG21030203
  • Received Date: 2021-03-02
    Available Online: 2022-12-01
  • Based on Lemaitre’s hypothesis theory of strain equivalence, it was assumed that the micro-element strength of rock subjected to thermal-mechanical coupling damage followed the Weibull distribution. Considering the influence of temperature and confining pressure coupling on rock mechanical parameters, the thermal-mechanical damage variables were introduced by the damage mechanic theory. In the condition that the microelement failure conformed to the D-P criterion, the damage evolution equation for coupling of temperature and mechanics and the constitutive model of rock were established. The required model parameters were derived by the theory. Comparing between the peak points in the established constitutire model curves for thermal-mechanical coupling demage and experimental curves, the results showed that the two curves were in good agreement, the model could well reflect the damage evolution and the constitutive relation for rock in the coupling of temperature and confining pressure. The rationality and reliability of the model and the method to determine the model parameters were verified. The model parameters required by the model could be obtained by conventional triaxial tests in laboratory.
  • [1]
    KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures,1982,18(7): 551-562.
    [2]
    LEMAITRE J. How to use damage mechanics[J].Nuclear Engineering and Design,1984,80(2):235-245.
    [3]
    秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20(4):560-562.
    [4]
    徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791.
    [5]
    曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [6]
    张明,王菲,杨强.基于三轴压缩试验的岩石统计损伤本构模型[J].岩土工程学报,2013,35(11):1965-1971.
    [7]
    曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006,27(1):41-46.
    [8]
    胡其志,冯夏庭,周辉.考虑温度损伤的盐岩蠕变本构关系研究[J].岩土力学,2009,30(8):2245-2249.
    [9]
    KESHAVARZ M, PELLET F L, LORET B. Damage and changes in mechanical properties of a gabbro thermally loaded up to 1 000 ℃[J]. Pure Appl Geophys, 2010, 167: 1511-1523.
    [10]
    尹光志,李小双,赵洪宝.高温后粗砂岩常规三轴压缩条件下力学性试验研究[J].岩石力学与工程学报,2009,28(3):599-603.
    [11]
    赵阳升,万志军,张渊,等.岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
    [12]
    杜守继,刘华,职洪涛,等.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364.
    [13]
    刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411.
    [14]
    翟松韬,吴刚,张渊,等.高温作用下花岗岩的声发射特征研究[J].岩石力学与工程学报,2013,32(1):126-134.
    [15]
    高红梅,兰永伟,周莉,等.温度作用下缺陷花岗岩热损伤:以甘肃北山缺陷花岗岩为例[J].吉林大学学报(地球科学版),2017,47(6):1795-1802.
    [16]
    GOLSHANI A, OKUI Y, ODA M,et al. A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite[J].Mechanics of Materials,2006,38(4):287-303.
    [17]
    徐银花,徐小丽.高温下岩石损伤本构模型研究[J].广西大学学报(自然科学版),2017,42(1):226-235.
    [18]
    张慧梅,雷利娜,杨更社.温度与荷载作用下岩石损伤模型[J].岩石力学与工程学报,2014,33(增刊2):3391-3397.
    [19]
    秦严.高温后花岗岩物理力学性质试验研究[D].北京:中国地质大学(北京),2017:33-52.
  • Relative Articles

    [1]XING Guolei, LI Shouying, WU Yingqiang, LIU Min, WANG Yongfeng. Research on Wind-Induced Responses of a Solar Tower in CSP Station Based on Aeroelastic Model Test[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 148-152,160. doi: 10.13204/j.gyjzG21101208
    [2]XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
    [3]HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
    [4]HUANG Peng, LIN Huatan, GU Ming. THE WIND TUNNEL TEST OF THE AEROELASTIC MODEL OF A STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 64-68. doi: 10.13204/j.gyjzG201906280004
    [12]Sun Binyan, Zhang Xuwei, Chen Jiaguang. VIBRATION MODES COUPLING EFFECT IN THE WIND-INDUCED RESPONSE OF A LONG SPAN ROOF[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 139-143. doi: 10.13204/j.gyjz201208027
    [13]Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
    [14]Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
    [15]Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
    [16]Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
    [17]Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
    [18]Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
    [19]Xue Weichen, Huang Yongjia, Wang Guinian. PROTOTYPE EXPERIMENTAL STUDIES ON FLEXIBLE FLANGES FOR LONG-SPAN ELECTRIC TRANSMISSION TOWER IN WUSONGKOU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 68-70. doi: 10.13204/j.gyjz200403021
  • Cited by

    Periodical cited type(3)

    1. 曾璧环,池曦锵,张佳毅,杨德栋,曹枚根. 海岛输电塔线体系风振响应及易损性分析. 山东电力技术. 2024(01): 24-34 .
    2. 朱薇薇,加永登增,侯栋,孙禄,周甘霖. 藏东高压输电线路设计中线条风荷载计算对比. 甘肃科技. 2023(05): 51-56 .
    3. 舒赣平,罗柯镕,王章轩,朱姣,余亮,墨泽,宁帅朋. 385m超大型长江大跨越输电塔铸钢节点受力性能研究. 工业建筑. 2022(08): 34-40+47 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 86.4 %META: 86.4 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.2 %其他: 15.2 %北京: 4.5 %北京: 4.5 %南京: 1.0 %南京: 1.0 %呼伦贝尔: 0.5 %呼伦贝尔: 0.5 %天津: 1.0 %天津: 1.0 %太原: 0.5 %太原: 0.5 %安康: 0.5 %安康: 0.5 %常德: 1.0 %常德: 1.0 %平凉: 1.0 %平凉: 1.0 %广州: 1.5 %广州: 1.5 %张家口: 1.0 %张家口: 1.0 %徐州: 0.5 %徐州: 0.5 %无锡: 1.0 %无锡: 1.0 %昆明: 3.5 %昆明: 3.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 2.5 %朝阳: 2.5 %杭州: 0.5 %杭州: 0.5 %武汉: 1.0 %武汉: 1.0 %沈阳: 1.0 %沈阳: 1.0 %济南: 0.5 %济南: 0.5 %温州: 1.0 %温州: 1.0 %漯河: 1.0 %漯河: 1.0 %潍坊: 1.0 %潍坊: 1.0 %秦皇岛: 1.0 %秦皇岛: 1.0 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 28.8 %西宁: 28.8 %西安: 1.0 %西安: 1.0 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.5 %运城: 3.5 %郑州: 2.0 %郑州: 2.0 %重庆: 2.0 %重庆: 2.0 %铁岭: 3.5 %铁岭: 3.5 %长沙: 2.0 %长沙: 2.0 %阿坝: 0.5 %阿坝: 0.5 %青岛: 1.0 %青岛: 1.0 %黄山: 0.5 %黄山: 0.5 %黄石: 1.0 %黄石: 1.0 %其他北京南京呼伦贝尔天津太原安康常德平凉广州张家口徐州无锡昆明晋城朝阳杭州武汉沈阳济南温州漯河潍坊秦皇岛芒廷维尤芝加哥西宁西安贵阳运城郑州重庆铁岭长沙阿坝青岛黄山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (187) PDF downloads(2) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return