Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 6
Oct.  2021
Turn off MathJax
Article Contents
CAI Jianguo, ZHANG Qian, WANG Liwu, DU Caixia, ZHANG Huizhong, WANG Yongbin, WU Shiqing. RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 42-47,83. doi: 10.13204/j.gyjzG21020403
Citation: CAI Jianguo, ZHANG Qian, WANG Liwu, DU Caixia, ZHANG Huizhong, WANG Yongbin, WU Shiqing. RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 42-47,83. doi: 10.13204/j.gyjzG21020403

RESEARCH ON IN-SITU FORMING TECHNIQUE OF THE LUNAR SOIL AND ITS STRUCTURE SYSTEM

doi: 10.13204/j.gyjzG21020403
  • Received Date: 2021-02-04
    Available Online: 2021-10-27
  • As a research hotspot of in-situ utlization techniques for lunar resources, the in-situ forming technique of the lunar soil is the key to the manufacture of construction materials and the implementation of the lunar surface infrastructure. Based on the development status of in-situ lunar soil molding technique, spark plasma sintering (SPS) was used to achieve the modeling of simulated lunar soil. A quasi-static compression test was conducted on the molded specimen to study its compressive strength and elastic modulus. Based on the construction concept of the stone arch bridge structure and tenon structure, the lunar base structure system was designed, and the component connection method was proposed. Moreover, the applicability of arch structure to the construction of lunar soil molding structure was analyzed by finite element simulation. The results could provide a feasible path to achieve the in-situ construction by the lunar soil.
  • loading
  • [1]
    SANDERS G B. Space Resource Utilization Near-Term Missions and Long-Term Plans for Human Exploration:NASA-20160002061[R]. Washington D C:NASA, 2016.
    [2]
    SANDERS G B, LARSON W E. Progress Made in Lunar in Situ Resource Utilization Under NASA's Exploration Technology and Development Program[J]. Journal of Aerospace Engineering, 2013, 26(1):5-17.
    [3]
    BASSLER J A, BODIFORD M P, HAMMOND M S, et al. In Situ Fabrication and Repair(ISFR) Technologies, New Challenges for Exploration Collection of Technical Papers[C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting. Reno, NV:2006:4166-4172.
    [4]
    CLINTON R G. The Road to Realizing In-Space Manufacturing:NASA-20140008760[R]. Washington D C:NASA, 2014.
    [5]
    ZENG X W, BURNOSKI L, AGUI H J, et al. Calculation of Excavation Force for ISRU on Lunar Surface[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV:2007:2007-1474.
    [6]
    梁磊.浅层月壤铲挖动力学建模及应用研究[D].哈尔滨:哈尔滨工业大学,2014.
    [7]
    ALLAN S M, MERRITT B J, GRIFFIN B F, et al. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant[J]. Journal of Aerospace Engineering, 2013, 26(4):874-881.
    [8]
    宋蕾,徐佼,唐红,等.模拟月壤成型研究现状[J]. 矿物学报,2020,40(1):49-59.
    [9]
    王志浩,刘宇明,田东波,等.月壤原位成型技术工程适用性浅析[J].航天器环境工程,2018,35(3):298-306.
    [10]
    王志浩,马子良,田东波,等. 基于激光烧结升温特性分析的月壤原位成型技术研究[J].装备环境工程,2020,17(3):65-70.
    [11]
    CLINTON R G. The Road to Realizing in-Space Manufacturing:NASA-20140008760[R]. Washington D C:NASA, 2014.
    [12]
    阮建明,黄培云.粉末冶金原理[M].北京:机械工业出版社,2016.
    [13]
    ALEXIADIS A, ALBERINI F, MEYER M E. Geopolymers from Lunar and Martian Soil Simulants[J]. Advances in Space Research, 2016,59(1):490-495.
    [14]
    WANG K T, TANG Q, CUI X M, et al. Development of Near-Zero Water Consumption Cement Materials Via the Geopolymerization of Tektites and Its Implication for Lunar Construction[J]. Scientific Reports, 2016(6). DOI: 10.1038/srep29659.
    [15]
    LI H, ZHAO W, WU X, et al. 3D Printing and Solvent Dissolution Recycling of Polylactide-Lunar Regolith Composites by Material Extrusion Approach[J]. Polymers, 2020, 12(8). DOI: 10.3390/polym12081724.
    [16]
    HOSHINO T, WAKABAYASHI S, YOSHIHARA S, et al. Key Technology Development for Future Lunar Utilization:Block Production Using Lunar Regolith[J]. Transactions of the Japan Society for Aeronautical & Space Sciences Aerospace Technology Japan, 2016, 14(30):35-40.
    [17]
    ZHANG X, KHEDMATI M, KIM Y R, et al. Microstructure Evolution During Spark Plasma Sintering of FJS-1 Lunar Soil Simulant[J]. Journal of the American Ceramic Society, 2020, 103(2):899-911.
    [18]
    蒋明镜,李立青. TJ-1模拟月壤的研制[J]. 岩土工程学报,2011(33):209-214.
    [19]
    ZHOU C, CHEN R, XU J, et al. In-Situ Construction Method for Lunar Habitation:Chinese Super Mason[J]. Automation in Construction, 2019, 104:66-79.
    [20]
    欧阳自远,李春来,邹永廖,等.月球探测的进展与我国的月球探测[J].中国科学基金,2003(4):3-7.
    [21]
    赵娜.月震特征及与地震的对比[J].空间科学学报,2020,40(2):264-272.
    [22]
    丁烈云,徐捷,骆汉宾,等.月面建造工程的挑战与研究进展[J].载人航天,2019,25(3):277-285.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (160) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return