Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 7
Nov.  2021
Turn off MathJax
Article Contents
ZHU Jing, FENG Shihui, LIANG Siqi, LIU Shaotong, GUO Qinghua, HUANG Wenxuan. EXPERIMENTAL RESEARCH ON COMPRESSIVE PERFORMANCES OF MASONRY AFTER BEIING SUBJECTED TO HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 170-176. doi: 10.13204/j.gyjzG21011111
Citation: ZHU Jing, FENG Shihui, LIANG Siqi, LIU Shaotong, GUO Qinghua, HUANG Wenxuan. EXPERIMENTAL RESEARCH ON COMPRESSIVE PERFORMANCES OF MASONRY AFTER BEIING SUBJECTED TO HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 170-176. doi: 10.13204/j.gyjzG21011111

EXPERIMENTAL RESEARCH ON COMPRESSIVE PERFORMANCES OF MASONRY AFTER BEIING SUBJECTED TO HIGH TEMPERATURE

doi: 10.13204/j.gyjzG21011111
  • Received Date: 2021-01-11
    Available Online: 2021-11-11
  • The plant-fiber-reinforced alkali-activated-slag cementitious material is a kind of new green building material with a great application prospect. The application of industrial and agricultural wastes such as slag and straw can be not only reduce the cost of construction cost, but also obviously improve the anti-cracking performances of the block masonry. The compressive performance tests were conducted on 60 pieces of block masonry constructed by different fiber-reinforced alkali-activated-slag cementitious material at normal temperature and after high temperature. The test result showed that the strength grades of fiber-reinforced block masonry constructed by plantfiber,polypropylene fiber or microsteel fiber were equivalent to the concrete block masory of MU7.5, MU10 and MU15 at normal temperature respectively. The plant fiber still had a certain toughening effect on masory after being subjected to 800℃. By means of regression analysis, an equation for calculating the compressive strength of plant-fiber-reinforced block masonry after being subjected to high temperature was constructed.
  • loading
  • [1]
    袁润章. 胶凝材料学[M]. 武汉:武汉理工大学出版社, 2003:60-167.
    [2]
    朱晶, 郑文忠, 谢礼立, 等.不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J]. 工业建筑, 2019, 49(5):109-114.
    [3]
    PIMRAKSA K, CHINDAPRASIRT P, RUNGCHET A, et al. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios[J]. Materials Science and Engineering, 2011, 528(21):6616-6623.
    [4]
    郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015:1-12.
    [5]
    JIAO Z Z, WANG Y, ZHENG W Z, et al. Effect of the Activator on the Performance of Alkali-Activated Slag Mortars with Pottery Sand as Fine Aggregate[J]. Construction and Building Materials, 2019, 197(10):83-90.
    [6]
    ZHU J, ZHENG W Z, XIE L L, et al. A High-Temperature-Resistant Inorganic Matrix for Concrete Structures Enhanced by Fiber-Reinforced Polymer[J]. Alexandria Engineering Journal, 2021, 60(1):131-143.
    [7]
    RI-ON O, SANG-SUN C, SEONG-YONG P, et al. Mechanical Properties and water Purification Characteristics of Natural Jute Fiber-reinforced Non-Cement Alkali-Activated Porous Vegetation Blocks[J]. Paddy Water Environment, 2014, 12(S1):149-156.
    [8]
    ZHU J, ZHENG W Z, XIE L L, et al. Alkali-Activated Slag Cement:Alternative Adhesives for CFRP Sheets Bonded to Concrete at Elevated Temperatures[J]. Journal of New Materials for Electrochemical Systems, 2020, 23(3):167-176.
    [9]
    ZHU J, ZHENG W Z, XIE L L, et al. Study on the Performance of Reinforced Concrete Blocks Treated by Styrene-Acrylic Emulsion[J]. Chemical Engineering Transactions, 2018, 66:85-90.
    [10]
    吴中伟. 纤维增强水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1):5-6.
    [11]
    朱晶, Sneed L H, 黄莹, 等. 不同纤维增强碱矿渣胶凝材料的配合比试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1):97-102.
    [12]
    黄丽媛. 植物纤维增强水泥基复合材料的研究[D]. 重庆:西南大学, 2019:8-23.
    [13]
    李保德, 王兴肖, 娄霓. 植物纤维增强砌块砌体轴心受压试验研究与有限元分析[J]. 建筑结构, 2011, 41(8):129-132

    , 109.
    [14]
    WON J P, KANG H B, LEE S J, et al. Eco-Friendly Fireproof High-Strength Polymer Cementitious Composites[J]. Cement and Concrete Composites, 2012, 30:406-412.
    [15]
    李国忠, 高子栋. 改性秸秆纤维增强石膏基复合材料性能[J] 建筑材料学报, 2011, 14(3):413-417.
    [16]
    王兴肖. 植物纤维增强砌块砌体力学性能试验研究与有限元分析[D]. 武汉:武汉理工大学, 2010:2-93.
    [17]
    ZHU J, ZHENG W Z, SNEED L H, et al. Mechanical Properties of Plant Fibers Reinforced Alkali-Activated Slag Cementitious Material at High Temperature[J]. Annales de Chimie:Science des Materiaux, 2019, 43(4):240-255.
    [18]
    ZHU J, ZHENG W Z, QIN C Z, et al. Effect of Different Fibers on Mechanical Properties and Ductility of Alkali-Activated Slag Cementitious Material[J]. Materials Science and Mechanical Engineering, 2017, 292:60-66.
    [19]
    OKSMANA K, KRIFVARSB M S, SELINC J F.Natural Fibres as Reinforcement in Polylactic Acid(PLA) Composites[J]. Composites Science and Technology, 2003, 63(9):1317-1324.
    [20]
    李国忠, 于衍真, 王志, 等. 植物纤维增强石膏复合材料的微观结构研究[J]. 复合材料学报, 1997, 14(3):72-76.
    [21]
    朱尊宝. 植物纤维增强碱矿渣胶凝材料高温后力学性能试验研究[D]. 哈尔滨:哈尔滨理工大学, 2016:22-43.
    [22]
    闫晓杰. 不同纤维增强碱矿渣胶凝材料砌块力学性能研究[D]. 哈尔滨:哈尔滨理工大学, 2017:8-25.
    [23]
    DOWNES R T, HALL-WALLACE M. The American Mineralogist Crystal Structure Database[J]. American Mineralogist, 2003, 88(1):247-250.
    [24]
    ZUDA L, ROVNANIK P, BAYER P, et al. Thermal Properties of Alkali-Activated Slag Subjected to High Temperature[J]. Journal of Building Physics, 2007, 30(4):337-350.
    [25]
    LUCIE Z D, ZBYŠEK P, PAVLA R, et al. Properties of Alkali Activated Aluminosilicate Material After Thermal Load[J]. International Journal of Thermophysics, 2006, 27(4):1250-1263.
    [26]
    朱晶. 碱矿渣胶凝材料耐高温性能及其工程应用基础研究[D]. 哈尔滨:哈尔滨工业大学, 2014:14-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return