Citation: | ZHU Jing, FENG Shihui, LIANG Siqi, LIU Shaotong, GUO Qinghua, HUANG Wenxuan. EXPERIMENTAL RESEARCH ON COMPRESSIVE PERFORMANCES OF MASONRY AFTER BEIING SUBJECTED TO HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 170-176. doi: 10.13204/j.gyjzG21011111 |
[1] |
袁润章. 胶凝材料学[M]. 武汉:武汉理工大学出版社, 2003:60-167.
|
[2] |
朱晶, 郑文忠, 谢礼立, 等.不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J]. 工业建筑, 2019, 49(5):109-114.
|
[3] |
PIMRAKSA K, CHINDAPRASIRT P, RUNGCHET A, et al. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios[J]. Materials Science and Engineering, 2011, 528(21):6616-6623.
|
[4] |
郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015:1-12.
|
[5] |
JIAO Z Z, WANG Y, ZHENG W Z, et al. Effect of the Activator on the Performance of Alkali-Activated Slag Mortars with Pottery Sand as Fine Aggregate[J]. Construction and Building Materials, 2019, 197(10):83-90.
|
[6] |
ZHU J, ZHENG W Z, XIE L L, et al. A High-Temperature-Resistant Inorganic Matrix for Concrete Structures Enhanced by Fiber-Reinforced Polymer[J]. Alexandria Engineering Journal, 2021, 60(1):131-143.
|
[7] |
RI-ON O, SANG-SUN C, SEONG-YONG P, et al. Mechanical Properties and water Purification Characteristics of Natural Jute Fiber-reinforced Non-Cement Alkali-Activated Porous Vegetation Blocks[J]. Paddy Water Environment, 2014, 12(S1):149-156.
|
[8] |
ZHU J, ZHENG W Z, XIE L L, et al. Alkali-Activated Slag Cement:Alternative Adhesives for CFRP Sheets Bonded to Concrete at Elevated Temperatures[J]. Journal of New Materials for Electrochemical Systems, 2020, 23(3):167-176.
|
[9] |
ZHU J, ZHENG W Z, XIE L L, et al. Study on the Performance of Reinforced Concrete Blocks Treated by Styrene-Acrylic Emulsion[J]. Chemical Engineering Transactions, 2018, 66:85-90.
|
[10] |
吴中伟. 纤维增强水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1):5-6.
|
[11] |
朱晶, Sneed L H, 黄莹, 等. 不同纤维增强碱矿渣胶凝材料的配合比试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1):97-102.
|
[12] |
黄丽媛. 植物纤维增强水泥基复合材料的研究[D]. 重庆:西南大学, 2019:8-23.
|
[13] |
李保德, 王兴肖, 娄霓. 植物纤维增强砌块砌体轴心受压试验研究与有限元分析[J]. 建筑结构, 2011, 41(8):129-132
, 109.
|
[14] |
WON J P, KANG H B, LEE S J, et al. Eco-Friendly Fireproof High-Strength Polymer Cementitious Composites[J]. Cement and Concrete Composites, 2012, 30:406-412.
|
[15] |
李国忠, 高子栋. 改性秸秆纤维增强石膏基复合材料性能[J] 建筑材料学报, 2011, 14(3):413-417.
|
[16] |
王兴肖. 植物纤维增强砌块砌体力学性能试验研究与有限元分析[D]. 武汉:武汉理工大学, 2010:2-93.
|
[17] |
ZHU J, ZHENG W Z, SNEED L H, et al. Mechanical Properties of Plant Fibers Reinforced Alkali-Activated Slag Cementitious Material at High Temperature[J]. Annales de Chimie:Science des Materiaux, 2019, 43(4):240-255.
|
[18] |
ZHU J, ZHENG W Z, QIN C Z, et al. Effect of Different Fibers on Mechanical Properties and Ductility of Alkali-Activated Slag Cementitious Material[J]. Materials Science and Mechanical Engineering, 2017, 292:60-66.
|
[19] |
OKSMANA K, KRIFVARSB M S, SELINC J F.Natural Fibres as Reinforcement in Polylactic Acid(PLA) Composites[J]. Composites Science and Technology, 2003, 63(9):1317-1324.
|
[20] |
李国忠, 于衍真, 王志, 等. 植物纤维增强石膏复合材料的微观结构研究[J]. 复合材料学报, 1997, 14(3):72-76.
|
[21] |
朱尊宝. 植物纤维增强碱矿渣胶凝材料高温后力学性能试验研究[D]. 哈尔滨:哈尔滨理工大学, 2016:22-43.
|
[22] |
闫晓杰. 不同纤维增强碱矿渣胶凝材料砌块力学性能研究[D]. 哈尔滨:哈尔滨理工大学, 2017:8-25.
|
[23] |
DOWNES R T, HALL-WALLACE M. The American Mineralogist Crystal Structure Database[J]. American Mineralogist, 2003, 88(1):247-250.
|
[24] |
ZUDA L, ROVNANIK P, BAYER P, et al. Thermal Properties of Alkali-Activated Slag Subjected to High Temperature[J]. Journal of Building Physics, 2007, 30(4):337-350.
|
[25] |
LUCIE Z D, ZBYŠEK P, PAVLA R, et al. Properties of Alkali Activated Aluminosilicate Material After Thermal Load[J]. International Journal of Thermophysics, 2006, 27(4):1250-1263.
|
[26] |
朱晶. 碱矿渣胶凝材料耐高温性能及其工程应用基础研究[D]. 哈尔滨:哈尔滨工业大学, 2014:14-25.
|