Core Chinese Journal
Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHU Jing, FENG Shihui, GUO Qinghua, QU Zijian, LIU Shaotong, ZHENG Wenzhong. EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 58-62,180. doi: 10.13204/j.gyjzG21010708
Citation: ZHU Jing, FENG Shihui, GUO Qinghua, QU Zijian, LIU Shaotong, ZHENG Wenzhong. EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 58-62,180. doi: 10.13204/j.gyjzG21010708

EXPERIMENT ON THERMAL PERFORMANCE OF WALL MADE OF ALKALI-ACTIVATED SLAG CEMENTITIOUS MATERIAL MIXED WITH WHEAT-STRAW PLANT FIBER

doi: 10.13204/j.gyjzG21010708
  • Received Date: 2021-01-07
    Available Online: 2021-08-19
  • The thermal parameters of the wall made of plant fiber-reinforced alkali-activated slag cementitious material were measured through the cold and hot box heat flow meter method. The wall size was selected with 780 mm×950 mm×190 mm, and the thermocouples and heat flow meters were used to measure the temperature and heat flow on both sides of the wall. Then, the thermal resistance 0.408 m2·K/W and heat transfer coefficient 1.792 W/(m2·K) of the wall were measured by the dynamic method and the static method, respectively. Finally, The thermal conductivity of the wall was calculated as 0.136 W/(m·K). Compared with the air thermal conductivity of 0.84 W/(m·K) and the thermal conductivity of concrete wall of 1.74 W/(m·K), the thermal conductivity of plant fiber-reinforced alkali-activated slag cementitious material was lower, which could prove that the fiber-reinforced alkali-activated slag cementitious material had good thermal insulation performance.
  • loading
  • [1]
    KIM T W, JUN Y B. The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Using Hard-Burned MgO[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2015,19(3):39-47.
    [2]
    朱晶,郑文忠,谢礼立,等.不同纤维增强碱矿渣胶凝材料高温后力学性能试验研究[J].工业建筑, 2019,49(5):109-114.
    [3]
    PIMRAKSA K,CHINDAPRASIRT P,RUNGCHET A,et al. Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2011,528(21):6616-6623.
    [4]
    ZHU J, ZHENG W Z, XIE L L, et al. A High-Temperature-Resistant Inorganic Matrix for Concrete Structures Enhanced by Fiber-Reinforced Polymer[J]. Alexandria Engineering Journal, 2021,60(1):131-143.
    [5]
    FERNANDEZ-JIMENEZ A,PUERTAS F. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag:Influence of the Type of Alkaline Activator[J]. The Journal of American Ceramic Society,2003,33(1):2031-2036.
    [6]
    JIAO Z Z,WANG Y,ZHENG W Z,et al.Effect of Dosage of Sodium Carbonate on the Strength and Drying Shrinkage of Sodium Hydroxide Based Alkali-Activated Slag Paste[J]. Construction and Building Materials,2018,179(10):11-24.
    [7]
    程可佳.碱矿渣陶粒混凝土的自收缩及抗裂性能研究[D].福州:福州大学,2016:21-43.
    [8]
    郑文忠, 朱晶. 碱矿渣胶凝材料结构工程应用基础[M].哈尔滨:哈尔滨工业大学出版社, 2015:1-12.
    [9]
    吴中伟. 纤维增强水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1):5-6.
    [10]
    ZHU J, ZHENG W Z, XIE L L, et al. Alkali-Activated Slag Cement:Alternative Adhesives for CFRP Sheets Bonded to Concrete at Elevated Temperatures[J].Journal of New Materials for Electrochemical Systems, 2020,23(3):167-176.
    [11]
    黄丽媛. 植物纤维增强水泥基复合材料的研究[D].重庆:西南大学,2019:8-23.
    [12]
    ZHU J, ZHENG W Z, LESLEY H S, et al. Mechanical Properties of Plant Fibers Reinforced Alkali-Activated Slag Cementitious Material at High Temperature[J]. Annales de Chimie:Science des Materiaux, 2019, 43(4):240-255.
    [13]
    李保德, 王兴肖, 娄霓. 植物纤维增强砌块砌体轴心受压试验研究与有限元分析[J]. 建筑结构, 2011, 41(8):129-133

    ,109.
    [14]
    国家住房与居住环境工程技术研究中心.植物纤维石膏渣空心砌块应用技术规程:CECS 201:2006[S].北京:中国计划出版社,2006.
    [15]
    中国建筑设计研究院.植物纤维工业灰渣混凝土砌块建筑技术规程:JGJ/T 228-2010[S].北京:中国建筑工业出版社,2011.
    [16]
    KHALIQ W, KODUR V. Thermal and Mechanical Properties of Fiber Reinforced High Performance Self-Consolidating Concrete at Elevated Temperatures[J]. Cement and Concrete Research, 2011, 41(11):1112-1122.
    [17]
    PHATTHARACHAI M, TEEWARA S W, PEERAPONG J, et al. Hemp Fiber Reinforced Geopolymer Composites:Effects of NaoH Concentration on Fiber Pre-Treatment Process[J]. Key Engineering Materials, 2020, 841(1):166-170.
    [18]
    王兴肖. 植物纤维增强砌块墙体力学性能试验研究与有限元分析[D]. 武汉:武汉理工大学, 2010:12-39.
    [19]
    郑文忠, 王睿, 王英. 活性粉末混凝土热工参数试验研究[J]. 建筑结构学报, 2014, 35(9):107-114.
    [20]
    柳孝图. 建筑物理[M]. 3版.北京:中国建筑工业出版社2010:37-60.
    [21]
    中国建筑科学研究院.采暖居住建筑节能检验标准:JGJ 132-2001[S].北京:中国建筑工业出版社,2001.
    [22]
    中华人民共和国住房和城乡建设部.民用建筑热工设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return