Citation: | GUO Xiaosong, ZOU Chunxia, XUE Huijun, XU Deru, SUN Haoran, DING Feng. Mechanical Properties and Pore Characteristic of Alkali-Activated Aeolian Sand Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 162-168. doi: 10.13204/j.gyjzG20122906 |
[1] |
PANGDAENG S, PHOO-NGERNKHAM T, SATA V, et al. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive[J]. Materials and Design, 2014, 53:269-274.
|
[2] |
郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1):28-39.
|
[3] |
闫玉蓉, 方永浩, 龚泳帆, 等. 碱激发再生水泥砂浆粉胶凝材料的强度与显微结构[J].材料导报, 2013, 27(24):117-120.
|
[4] |
刘树森, 云治厚, 其其格, 等. 我国粉煤灰消纳问题的解决对策:以内蒙古自治区为例[J]. 煤炭加工与综合利用, 2020(8):92-96.
|
[5] |
JIA Z L, YAN S W, HUO Z L. Laboratory tests on engineering properties of wind-blown sand[J]. Applied Mechanics and Materials, 2012, 170-173:706-709.
|
[6] |
董伟, 吕帅, 薛刚. 风积沙与粉煤灰掺量对混凝土力学性能的影响[J]. 硅酸盐通报, 2018, 37(7):2320-2325.
|
[7] |
薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2):199-205.
|
[8] |
GOMAA E, SARGON S, KASHOSI C, et al. Mechanical properties of high early strength class C fly ash-based Alkali activated concrete[J]. Transportation Research Record, 2020, 2674(5):430-443.
|
[9] |
SOMNA K, JATURAPITAKKUL C, KAJITVICHYANUKUL P, et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature[J]. Fuel, 2011, 90(6):2118-2124.
|
[10] |
ALIABDO A A, ABD ELMOATY A. SALEM H. Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance[J]. Construction and Building Materials, 2016, 123:581-593.
|
[11] |
李根峰. 风积沙粉体混凝土耐久性能及服役寿命预测模型研究[D].呼和浩特:内蒙古农业大学, 2019.
|
[12] |
COATES G, 肖立志, PRAMMER M. 核磁共振测井原理与应用[M]. 北京:石油工业出版社, 2007.
|
[13] |
TYROLOGOU P, DUDENEY A W L, GRATTONI C A. Evolution of porosity in geotechnical composites[J]. Magnetic Resonance Imaging, 2005, 23(6):765-768.
|
[14] |
刘卫, 邢立. 核磁共振录井[M]. 北京:石油工业出版社, 2011.
|
[15] |
KIROLS H S, MAHDIPOOR M S, KEVORKOV D, et al. Energy based approach for understanding water droplet erosion[J]. Materials and Design, 2016, 104:76-86.
|
[16] |
PRINYA C, SILVA P, KWESI S, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calciumfly ash-based geopolymer systems[J]. Journal Materials Science, 2012, 47(12):4876-4883.
|
[17] |
覃丽芳, 曲波, 史才军, 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12):12057-12063.
|
[18] |
周华, 李英亮, 高峰, 等. 低场单边核磁对砖石材料加固效果的评价[J]. 建筑材料学报, 2013, 16(6):1097-1102.
|
[19] |
李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2):273-280.
|
[20] |
吴中伟, 廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社, 1999.
|
[21] |
祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6):863-867.
|
[22] |
邓聚龙. 灰色系统理论教程[M]. 武汉:华中理工大学出版社, 1990.
|
[23] |
刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 北京:科学出版社, 2014.
|
1. | 宋育鑫,邹春霞,薛慧君,郭晓松,刘伟,卞子为. 碱激发对粉煤灰混凝土强度及微观结构的影响. 材料科学与工程学报. 2024(02): 254-261 . | |
2. | 张启懿,邹春霞,郭晓松,宋育鑫,郑建庭,赵溢. NaOH改善粉煤灰混凝土微结构及抗风蚀-冻融耐久性能. 山东大学学报(工学版). 2024(04): 131-140 . |