Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Xiaowan, XU Yidong, DAI Di, CAO Tianci, LI Yifan, PENG Jie. EXPERIMENTAL STUDY ON PAVEMENT PERFORMANCES OF CEMENT-STABILIZED SOIL REINFORCED WITH SUPER ABSORBENT POLYMERS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 154-158. doi: 10.13204/j.gyjzG20110202
Citation: ZHAO Xiaowan, XU Yidong, DAI Di, CAO Tianci, LI Yifan, PENG Jie. EXPERIMENTAL STUDY ON PAVEMENT PERFORMANCES OF CEMENT-STABILIZED SOIL REINFORCED WITH SUPER ABSORBENT POLYMERS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 154-158. doi: 10.13204/j.gyjzG20110202

EXPERIMENTAL STUDY ON PAVEMENT PERFORMANCES OF CEMENT-STABILIZED SOIL REINFORCED WITH SUPER ABSORBENT POLYMERS

doi: 10.13204/j.gyjzG20110202
  • Received Date: 2020-11-02
    Available Online: 2022-03-29
  • Cement-stabilized soil has the characteristics of poor durability generally. By a series of unconfined compression tests, compactness tests, dry wet cycle tests and CBR tests on cement-stabilized soil mixed with the super absorbent ploymers, the strength, compactness and durability of the cement-stabilized soil reinforced by SAP were analyzed and studied. The experimental results proved that: adding SAP could improve the unconfined compressive strength of cemented soil, up to 185% and improve the compaction characteristics of cement-stabilized soil, the optimal moisture content could be increased by 2%. With the increase of drying and wetting cycles, the mass loss of SAP-cement-stabilized soil could be reduced, while the unconfined compressive strength could be improved by 121%, which indicated that SAP could improve the durability of cement-stabilized soil; the CBR of specimens cemented with cement and SAP were slightly lower than that cemented with cement. Adding SAP could obviously improve many indexes of pavement performances for cement-stabilized soil and meet the requirements of subgrade fillings of high-grade highways.
  • [1]
    龚晓南.地基处理技术及其发展[J].土木工程学报,1997(6):3-11.
    [2]
    汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报,2000(5):549-554.
    [3]
    樊恒辉,高建恩,吴普特,等.水泥基土壤固化剂固化土的物理化学作用[J].岩土力学,2010,31(12):3741-3745.
    [4]
    李海龙,刘科,沈扬,等.水泥-生石灰固化吹填土路用特性试验研究[J].水利与建筑工程学报,2014,12(2):51-57.
    [5]
    MACKAY M,EMERY J.Stabilization and Solidification of Contaminated Soils and Sludges Using Cementitious Systems:Selected Case Histories[J].Transportation Research Record,1994(1458):67-72.
    [6]
    JAUBERTHIE R,RENDELL F,RANGEARD D,et al.Stabilization of Estuarine Silt with Lime and/or Cement[J].Applied Clay Science,2010,50(3):0-400.
    [7]
    高国瑞,李俊才.水泥加固(改良)软土地基的研究[J].工程地质学报,1996(1):45-52.
    [8]
    查甫生,刘晶晶,许龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252.
    [9]
    NADLER A,PERFECT E,KAY B D.Effect of Polyacrylamide Application on the Stability of Dry and Wet Aggregates[J].Soil ence Society of America Journal,1996,60(2):555-561.
    [10]
    TADAYONFAR G,SHAHMIRI N,BAZOOBANDI M H.The Effect of Polyvinyl Acetate Polymer on Reducing Dust in Arid and Semiarid Areas[J].Open Journal of Ecology,2016,6(4):176-183.
    [11]
    李程.高分子材料固化黄土工程性能试验研究[D].太原:太原理工大学,2012.
    [12]
    KUKAL S S,KAUR M,BAWA S S,et al.Water-Drop Stability of PVA-Treated Natural Soil Aggregates from Different Land Uses[J].Catena,2007,70(3):475-479.
    [13]
    TUMSAVAS Z,TÜMSAVAS F.The Effect of Polyvinyl Alcohol (PVA) Application on Runoff,Soil Loss and Drainage Water Under Simulated Rainfall Conditions[J].Journal of Food Agriculture & Environment,2011,9(2):757-762.
    [14]
    WU C,LI X Y,ZHANG Y.Experimental Study of New Soil Stabilizers with Multi-Functions and Their Applications[C]//Water Resources and Environment:Proceedings of the 2015 International Conference on Water Resources and Environment.2015.
    [15]
    ATTOM M F,AL-SHARIF M M.Soil Stabilization with Burned Olive Waste[J].Applied Clay Science,1998,13(3):219-230.
    [16]
    王银梅,韩文峰,谌文武,等.新型高分子固化材料耐老化性能的试验研究[J].工程地质学报,2004(3):318-322.
    [17]
    邹斌,沈如,齐琳琳.改性脲醛树脂加固基床土质的研究[J].西南交通大学学报,2001,36(1):33-36.
    [18]
    MAMEDOV A I,SHAINBERG I,WAGNER L E,et al.Infiltration and Erosion in Soils Treated with Dry PAM,of Two Molecular Weights,and Phosphonyls[J].Australian Journal of Soil Research,2009,47(8):788.
    [19]
    GREEN V S,STOTT D E,GRAVEEL J G,et al.Stability Analysis of Soil Aggregates Treated with Anionic Polyacrylamides of Different Molecular Formulations[J].Soil Science,2004,169(8):573-581.
    [20]
    陈志昊,刘瑾,钱卫,等.高分子固化剂/纤维改良砂土的抗拉强度试验研究[J].工程地质学报,2019,27(2):350-359.
    [21]
    柴寿喜,王沛,韩文峰,等.高分子材料固化滨海盐渍土的强度与微结构研究[J].岩土力学,2007(6):1067-1072.
    [22]
    王银梅,杨重存,谌文武,等.新型高分子材料SH加固黄土强度及机理探讨[J].岩石力学与工程学报,2005(14):2554-2559.
    [23]
    ATE A.The Effect of Polymer-Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils[J].International Journal of Polymer Science,2013.https://doi.org/10.1155/2013/356214.
    [24]
    BIAN X,CAO Y P,WANG Z F,et al.Effect of Super-Absorbent Polymer on the Undrained Shear Behavior of Cemented Dredged Clay with High Water Content[J].J.Mater.Civ.Eng.,2017,29(7),04017023.
  • Relative Articles

    [1]YU Bin, ZHANG Yuanliang, XU Yi, WANG Xin, ZHANG Chuchu, CHENG Dianhu, SHAO Jianni. Mechanical Properties of Chopped Basalt Fiber-Reinforced Cement-Based Composites[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 197-205. doi: 10.3724/j.gyjzG24041501
    [2]DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
    [3]HAN Yudong, DING Xiaoping, HAO Tingyu, GUO Dong, HOU Dongwei. CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 186-192,120. doi: 10.13204/j.gyjzG20042507
    [4]ZHAO Xiaowan, LYU Jin, WANG Meihua, HUANG Mufan, XU Pengxu, PENG Jie. COMPARATIVE EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES BETWEEN SAND CEMENTED BY MICROBIALLY INDUCED CARBONATE PRECIPITATION AND CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 15-18,49. doi: 10.13204/j.gyjzG20052521
    [5]Chu Chengfu, Wang Lina, Li Xiaochun, Dong Mansheng. STRENGTH TEST ON THE SOLIDIFICATION FOR DREDGED SILT MIXED WITH IRON TAILINGS BY CEMENT AND CARBIDE SLAGS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 81-86. doi: 10.13204/j.gyjz201505018
    [6]Tan Qian Guo Hongxian Cheng Xiaohui, . EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 42-47. doi: 10.13204/j.gyjz201507009
    [7]Hu Weixin, Huang Wei, Qin Honggen. EFFECT OF DIATOMITE,ULTRAFINE RICE HUSK ASH,AND SILICON ASH ON THE PERFORMANCE OF DUAL POROUS CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 113-116. doi: 10.13204/j.gyjz201410023
    [8]Zha Fusheng, Hao Ailing, Zhao Lin, Cui Kerui. EXPERIMENTAL STUDY OF EXPANSIVE SOIL TREATED WITH CARBIDE SLAG[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 69-72.
    [9]Zhou Mei, Zhao Huamin, Lu Qilin, Pu Beichao. THE EFFECTS OF PRETREATMENT OF SPONTANEOUS COMBUSTION GANGUE AGGREGATE ON THE WORKABILITY AND STRENGTH OF CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 113-117. doi: 10.13204/j.gyjz2001412018
    [10]Zhou Hui. ANALYSIS OF MINERAL COMPOSITION IMPACT ON SOFT SOIL'S STRENGTH PROPERTIES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 61-64. doi: 10.13204/j.gyjz201307014
    [11]Zha Fusheng, Liu Jingjing, Cui Kerui, Xu Long. ENGINEERING PROPERTIES OF SOLIDIFIED AND STABILIZED HEAVY METAL CONTAMINATED SOILS WITH CEMENT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 74-77,110. doi: 10.13204/j.gyjz201211016
    [12]Luo Sihai, Gong Tianjie. INFLUENCE OF CONFINED IMPACT ON DEFORMATION AND STRENGTH BEHAVIOR OF COHESIVE SOILS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 81-85. doi: 10.13204/j.gyjz201103016
    [13]Xiao Weibing, Xu Dexin, Chen Yueqing, Cheng Xiaoyan. DISCUSSION ON REMAINING SERVICE LIFE OF CONCRETE BRIDGE BEFORE AND AFTER STRENGTHENING BASED ON ASSESSMENT OF DURABILITY CLASS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 84-88. doi: 10.13204/j.gyjz200905018
    [14]Wang Lei, Zhao Yanlin. RESEARCH ON THE DURABILITY OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBERS IN MARINE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 120-124. doi: 10.13204/j.gyjz200908029
    [15]Yang Yong-xin, Yue Qing-rui, Guo Chun-hong, Zhao Yan, Cai Peng. EVALUATION METHOD OF DURABILITY OF FRP[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 6-9. doi: 10.13204/j.gyjz200608002
    [16]Huang Xin, Ning Jian-guo, Xu Sheng, Lan Ming-zhang. INFLUENCE OF Ca(OH)2 CONCENTRATION IN THE PORE SOLUTION ON STRENGTH INCREASING OF THE STABILIZED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 19-24. doi: 10.13204/j.gyjz200607004
    [17]Xia Ning, Ren Qingwen, Zhu Zhenghua. THE APPLICATION OF FUZZY CLUSTER ANALYSIS IN THE EVALUATION OF DURABILITY OF COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 72-74. doi: 10.13204/j.gyjz200505019
    [18]Zhang Leishun, Wang Juan, Huang Qiufeng, Deng Yu. EXPERIMENTAL STUDY ON FROST-RESISTANT DURABILITY OF RECYCLED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 64-66,45. doi: 10.13204/j.gyjz200509017
    [19]Liu Ronggui, Lu Chunhua, Lei Liheng, LüZhitao. STUDY ON DURABILITY OF MODERN PRESTRESSED CONCRETE STRUCTURE IN CARBONATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 69-72. doi: 10.13204/j.gyjz200404020
    [20]Niu Chunlei, Zhu Bolong. EXPERIMENT RESEARCH ON IMPROVING COMPRESSIVE STRENGTH OF ECCENTRICALLY LOADED COLUMNS STRENGTHENED BY FIBER REINFORCED PLASTIC[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 95-98. doi: 10.13204/j.gyjz200409028
  • Cited by

    Periodical cited type(6)

    1. 张爽,李敬伟,付晓丽,侯祥山,刘延慧,文传琦,王旭江,王子良,王文龙,谢营,王森. 功能性外加剂对固废基硫铝铁系胶凝材料固化砂土的影响研究. 环境卫生工程. 2025(01): 15-22 .
    2. 金茂祥,黄志坚. 工程废弃泥浆固化土路用性能研究. 地基处理. 2025(01): 83-89 .
    3. 陈俊华,丁云飞,颜宇,奚柏承. 固化剂种类和含量对固化土力学性能的影响研究. 中国石油和化工标准与质量. 2024(02): 140-142 .
    4. 俞翔,曹天赐,白兰兰,商志阳,戴迪,彭劼. 聚丙烯酰胺对水泥固化砂土性能的影响. 河北工程大学学报(自然科学版). 2023(02): 65-70 .
    5. 梅红,马柯,刘瑾,王禄艺,冯玉晗,齐梦瑶,胡梦园. 生态型稳定剂协同植物根系固土特性及机理研究. 水利水电科技进展. 2023(04): 52-58 .
    6. 何佳,孙虎,刘志义. 环氧树脂改性材料在松软路面固化工程中的应用研究. 粘接. 2023(09): 58-61 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.0 %FULLTEXT: 8.0 %META: 89.8 %META: 89.8 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %China: 1.1 %China: 1.1 %上海: 1.1 %上海: 1.1 %东莞: 1.7 %东莞: 1.7 %临沂: 0.6 %临沂: 0.6 %丽水: 1.7 %丽水: 1.7 %北京: 3.4 %北京: 3.4 %南京: 3.4 %南京: 3.4 %厦门: 2.3 %厦门: 2.3 %台州: 2.8 %台州: 2.8 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.6 %呼和浩特: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %安康: 1.1 %安康: 1.1 %宿州: 1.1 %宿州: 1.1 %常德: 0.6 %常德: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.7 %杭州: 1.7 %武汉: 3.4 %武汉: 3.4 %沈阳: 0.6 %沈阳: 0.6 %济南: 0.6 %济南: 0.6 %深圳: 0.6 %深圳: 0.6 %湖州: 0.6 %湖州: 0.6 %湘潭: 0.6 %湘潭: 0.6 %漯河: 2.3 %漯河: 2.3 %潍坊: 0.6 %潍坊: 0.6 %石家庄: 1.1 %石家庄: 1.1 %福冈县: 1.1 %福冈县: 1.1 %福州: 0.6 %福州: 0.6 %芒廷维尤: 23.9 %芒廷维尤: 23.9 %芝加哥: 2.8 %芝加哥: 2.8 %苏州: 0.6 %苏州: 0.6 %西宁: 8.5 %西宁: 8.5 %西安: 0.6 %西安: 0.6 %贵阳: 0.6 %贵阳: 0.6 %运城: 6.8 %运城: 6.8 %通辽: 1.1 %通辽: 1.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.1 %郑州: 1.1 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.6 %阳泉: 0.6 %雷德蒙德: 0.6 %雷德蒙德: 0.6 %黄石: 0.6 %黄石: 0.6 %其他China上海东莞临沂丽水北京南京厦门台州合肥呼和浩特嘉兴天津安康宿州常德张家口成都晋城朝阳杭州武汉沈阳济南深圳湖州湘潭漯河潍坊石家庄福冈县福州芒廷维尤芝加哥苏州西宁西安贵阳运城通辽邯郸郑州长沙阳泉雷德蒙德黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(4) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return