Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Xin, WANG Junjie, ZHAO Yong, WANG Wei. Numerical Analysis of Joint of Composite Beam and Rectangular Steel Tube Under Progressive Collapse Condition[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 140-146. doi: 10.13204/j.gyjzG20100803
Citation: SUN Xin, WANG Junjie, ZHAO Yong, WANG Wei. Numerical Analysis of Joint of Composite Beam and Rectangular Steel Tube Under Progressive Collapse Condition[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 140-146. doi: 10.13204/j.gyjzG20100803

Numerical Analysis of Joint of Composite Beam and Rectangular Steel Tube Under Progressive Collapse Condition

doi: 10.13204/j.gyjzG20100803
  • Received Date: 2020-10-08
    Available Online: 2022-07-23
  • Publish Date: 2022-07-23
  • The finite element model of joint of composite beam and rectangular steel tube was established to investigate the resistance under the progressive collapse scenario through finite element software ABAQUS. The middle-joint above the removed column and the side-joint adjacent to the removed column were considered to investigate the failure mode and resistance mechanism.The results showed the resistance mechanism of middle joint was flexural action, compressive arch action and catenary action, while the resistance mechanism of side joint was flexural action and catenary action. Compressive arch action significantly improved the bearing capality load resistance at flexural stage and delays the catenary action for middle joint. According to the principle of energy, the static responses of two joints were transformed into dynamic responses.With the simplified assessment method,the results indicated that these two joints had enough resistance to withstand progressive collapse.
  • [1]
    DoD. Design of buildings to resist progressive collapse:Unified Facilities Criteria UFC 4-023-03[S]. Washington D C:Department of Defense, 2016.
    [2]
    GSA. Alternate path analysis&design guidelines for progressive collapse resistance[S]. USA:General Services Administration, 2013.
    [3]
    中国人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2018.
    [4]
    SADEK F, MAIN J A, LEW H S, et al. Testing and analysis of steel and concrete beam-column assemblies under a column removal scenario[J]. Journal of Structural Engineering, 2011, 137(9):881-892.
    [5]
    LI L, WANG W, CHEN Y Y, et al. Experimental investigation of beam-to-tubular column moment connections under column removal scenario[J]. Journal of Constructional Steel Research, 2013, 88(9):244-255.
    [6]
    王伟,秦希,王俊杰.内隔板式与隔板贯通式方钢管混凝土柱-H形钢梁节点抗连续倒塌性能对比[J].建筑结构学报,2017,38(增刊1):362-368.
    [7]
    GUO L H, GAO SH, FU F, et al. Experimental study and numerical analysis of progressive collapse resistance of composite frames[J]. Journal of Constructional Steel Research, 2013, 89(10):236-251.
    [8]
    YANG B, TAN K H, XIONG G. Behaviour of composite beam-column joints under a middle-column-removal scenario:Component-based modelling[J]. Journal of Constructional Steel Research, 2015, 104(1):137-154.
    [9]
    中国工程建设标准化协会.钢结构住宅设计规范:CECS 261:2009[S].北京:中国建筑工业出版社, 2009.
    [10]
    张战廷,刘宇锋.ABAQUS中的混凝土塑性损伤模型[J].建筑结构,2011,41(增刊2):229-231.
    [11]
    苏明周,李旭东,宋安良,等.含型钢边缘构件混合连肢墙弱节点受力性能有限元分析[J].广西大学学报(自然科学版),2012,37(4):636-641.
    [12]
    高山,郭兰慧,吴兆旗,等.关键柱失效后组合框架抗倒塌试验研究及理论分析[J].建筑结构学报,2013,34(4):43-48.
    [13]
    QIAN K,LI B,MA J X. Load-carrying mechanism to resist progressive collapse of RC buildings[J]. Journal of Structural Engineering, 2014, 141(2).DOI:10.1061/(asce) st.1943-54/x.000.1046.
    [14]
    IZZUDDIN B A, VLASSIS A G, ELGHAZOULI A Y, et al. Nethercot. Progressive collapse of multi-storey buildings due to sudden column loss-part I:simplified assessment framework[J]. Engineering Structures,2007,30(5):1308-1318.
    [15]
    ASCE. Minimum design loads for buildings and other structures:ASCE/SEI 7-10[S]. American Society of Civil Engineers, 2013.
  • Relative Articles

    [1]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [2]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [3]QIAO Hongxia, YANG An, YANG Bo, LI Yuanke, DU Hangwei. Research on Life Prediction of Nano-CaCO3 Modified Concrete Based on Weibull Distribution[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 174-179. doi: 10.13204/j.gyjzG21032911
    [4]LIU Zhong, XIAO Shuiming, LIU Feifei, LONG Wenliang, ZHANG Minxia. Experimental Study on Influence Factors of Anti-Wind Erosion and Anti-Dust for Construction Debris Cemented by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 71-78. doi: 10.13204/j.gyjzG22070609
    [5]WANG Lei, WANG Bo, LIU Zhiqiang, CHANG Xinhao. Advances of Soil Cemented by Enzyme Induced Calcium Carbonate Precipitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 57-66. doi: 10.13204/j.gyjzG22061503
    [6]WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
    [7]ZHANG Jianwei, HAN Yi, BIAN Hanliang, HUANG Xiaoshan, WANG Xiaoju, LI Beibei. EXPERIMENTAL RESEARCH ON WIND RESISTANCE OF SILTY SOIL CEMENTED BY SOYBEAN UREASE INDUCED CALCIUM CARBONATE PRECIPITATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 19-24,118. doi: 10.13204/j.gyjzG20021404
    [16]Li Meng Guo Hongxian Cheng Xiaohui Yang Zuan, . ISOLATION OF UREASE PRODUCING BACTERIA FROM SOIL AND LABORATORY TEST OF SANDS SOLIDIFICATION[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 8-12. doi: 10.13204/j.gyjz201507002
    [17]Guo Hongxian Zhang Yue Cheng Xiaohui Ma Ruinan, . CRACK REPAIR AND SURFACE DEPOSITION OF CEMENT-BASED MATERIALS BY MICP TECHNOLOGY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 36-41. doi: 10.13204/j.gyjz201507008
    [18]Zhang Shuai Cheng Xiaohui, . NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON STABILIZATION OF LIQUEFIABLE SAND FOUNDATION BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 23-27. doi: 10.13204/j.gyjz201507005
    [19]Zhang Yue, Guo Hongxian, Cheng Xiaohui, Li Meng. FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 138-143. doi: 10.13204/j.gyjz201312026
  • Cited by

    Periodical cited type(1)

    1. 徐洪钟,王沐婉,沐红元,米健,吴永红. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究. 清华大学学报(自然科学版). 2024(07): 1168-1178 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.3 %FULLTEXT: 9.3 %META: 90.7 %META: 90.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.1 %其他: 13.1 %其他: 0.5 %其他: 0.5 %China: 1.6 %China: 1.6 %东莞: 1.6 %东莞: 1.6 %北京: 1.6 %北京: 1.6 %十堰: 1.1 %十堰: 1.1 %南京: 1.1 %南京: 1.1 %南宁: 1.1 %南宁: 1.1 %厦门: 0.5 %厦门: 0.5 %呼和浩特: 1.1 %呼和浩特: 1.1 %天津: 0.5 %天津: 0.5 %宣城: 0.5 %宣城: 0.5 %常德: 0.5 %常德: 0.5 %广安: 0.5 %广安: 0.5 %广州: 0.5 %广州: 0.5 %张家口: 1.6 %张家口: 1.6 %成都: 0.5 %成都: 0.5 %扬州: 1.1 %扬州: 1.1 %无锡: 0.5 %无锡: 0.5 %晋城: 0.5 %晋城: 0.5 %海口: 0.5 %海口: 0.5 %温州: 1.1 %温州: 1.1 %漯河: 4.4 %漯河: 4.4 %绵阳: 5.5 %绵阳: 5.5 %芒廷维尤: 26.2 %芒廷维尤: 26.2 %芝加哥: 0.5 %芝加哥: 0.5 %衡水: 0.5 %衡水: 0.5 %西宁: 22.4 %西宁: 22.4 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.4 %运城: 4.4 %郑州: 1.6 %郑州: 1.6 %重庆: 1.1 %重庆: 1.1 %青岛: 0.5 %青岛: 0.5 %其他其他China东莞北京十堰南京南宁厦门呼和浩特天津宣城常德广安广州张家口成都扬州无锡晋城海口温州漯河绵阳芒廷维尤芝加哥衡水西宁贵阳运城郑州重庆青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(4) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return