Citation: | LYU Zhilin, JIANG Xu, QIANG Xuhong, SUN Kai, DONG Hao. Feasibility Research on Strengthening Damaged Steel Structure with Self-Stress SMA[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 174-182. doi: 10.13204/j.gyjzG20100301 |
[1] |
杨仕力,施洲.我国大跨径钢箱梁桥正交异性板疲劳损伤研究现状[J]. 桥梁建设, 2017,47(4):60-65.
|
[2] |
吴冲,刘海燕,张志宏,等.桥面铺装温度对正交异性钢桥面板疲劳的影响[J].同济大学学报(自然科学版),2013,41(8):1213-1218.
|
[3] |
杨佑发,陈前,雷鸣.在役钢结构吊车梁疲劳可靠性分析[J].振动与冲击,2020,39(9):165-172
,193.
|
[4] |
ŽELJKO D. Comparison of fatigue crack retardation methods[J]. Engineering Failure Analysis, 1996, 3(2):137-147.
|
[5] |
TAVAKKOLIZADEH M, SAADATMANESH H. Fatigue strength of steel girders strengthened with carbon fiber-reinforced polymer patch[J]. Journal of Structural Engineering, 2003, 129(2):186-196.
|
[6] |
彭福明,岳清瑞,郝际平,等. 碳纤维增强复合材料(CFRP)加固修复损伤钢结构[J].工业建筑,2003,33(9):7-10
,28.
|
[7] |
郑云,叶列平,岳清瑞.CFRP加固疲劳损伤钢结构的断裂力学分析[J].工业建筑,2005,35(10):79-82.
|
[8] |
郑云,叶列平,岳清瑞.CFRP板加固含裂纹受拉钢板的疲劳性能研究[J].工程力学,2007(6):91-97.
|
[9] |
LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials, 2018, 174:421-432.
|
[10] |
EMDAD R, AL-MAHAIDI R. Effect of prestressed cfrp patches on crack growth of centre-notched steel plates[J]. Composite Structures, 2015, 123:109-122.
|
[11] |
GHAFOORI E, HOSSEINI A, AL-MAHAIDI R, et al. Prestressed CFRP-strengthening and long-term wireless monitoring of an old roadway metallic bridge[J]. Engineering Structures, 2018, 176:585-605.
|
[12] |
JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials and Design, 2014(56):1078-1113.
|
[13] |
左晓宝, 李爱群, 倪立峰, 等. 超弹性形状记忆合金丝(NiTi)力学性能的试验研究[J]. 土木工程学报, 2004(12):12-18.
|
[14] |
NEMAT-NASSER S, GUO W G. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(5):463-474.
|
[15] |
王伟,邵红亮.不同直径NiTi形状记忆合金棒材的超弹性试验研究[J].结构工程师,2014,30(3):168-174.
|
[16] |
EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures, 2015, 24(6):1-21.
|
[17] |
DONG Z, KLOTZ U E, LEINENBACH C, et al. A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation[J]. Advanced Engineering Materials, 2009,11(1/2):40-44.
|
[18] |
GHAFOORI E, HOSSEINI E, LEINENBACH C, et al. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening[J]. Materials and Design, 2017,133:349-62.
|
[19] |
ZHANG C S, ZHAO L C, DUERIG T W, et al. Effects of deformation on the transformation hysteresis and shape memory effect in a Ni47ti44nb9 alloy[J]. Scripta Metallurgica Et Materialia, 1990, 24(9):1807-1812.
|
[20] |
MIYAZAKI S, IMAI T, IGO Y, et al. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys[J]. Metall Trans A, 1986, 17(1):115-120.
|
[21] |
陈翔. 镍钛铌形状记忆合金特性的试验与本构模型研究[D]. 重庆:重庆大学,2016.
|
[22] |
LEE W J, WEBER B, FELTRIN G, et al. Phase transformation behavior under uniaxial deformation of an Fe-Mn-Si-Cr-Ni-VC shape memory alloy[J]. Materials Science & Engineering A, 2013, 581(10):1-7.
|