YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation:
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
Citation:
YANG Yuan, CUI Qiandao, LIAN Jijian, LIU Hongbo, ZHOU Guangen, CHEN Zhihua. LSTM-BASED DAMAGE PREDICTION AND ASSESSMENT OF SPATIAL FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 203-208. doi: 10.13204/j.gyjzG20092308
The Kiewitt (K6) spherical reticulated shell was used as the research object to study the data-driven damage prediction and assessment of the space frame structure. By numerical simulations, Structural Health Monitoring (SHM) simulation data of structural modal frequency subjected to uniform atmospheric corrosion were obtained. A Long-Short-Term Memory (LSTM) based the deep learning model for structural damage prediction and assessment was constructed. Finally, the LSTM-based damage prediction and assessment method for the space frame structure was summarized. The results showed that LSTM could be used to establish a data-driven deep learning model for SHM data, predict and assess the structural health status. The model performed well on the simulation data with good anti-noise properties which could nicely fit SHM simulation data with a good short-term prediction effect. The updated data sets could readjust the model, so as to achieve the continuous prediction and assessment for structural health status.
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. Canbridge:MIT Press, 2016:373.
[6]
GOODFELLOW I, BENGIO Y, COURVILLE A. 深度学习[M]. 赵申剑, 黎彧君, 李凯, 等, 译.北京:人民邮电出版社, 2017:319.
[7]
PASCANU R, MIKOLOV T, BENGIO Y. On the Difficulty of Training Recurrent Neural Networks[C]//International Conference on Machine Learning. 2013:1310-1318.
[8]
BENGIO Y, SIMARD P, FRASCONI P. Learning Long-Term Dependencies with Gradient Descent is Difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-166.
[9]
HOCHREITER S, BENGIO Y, FRASCONI P, SCHMIDHUBER J. Gradient flow in recurrent nets:the difficulty of learning long-term dependencie[G]//KOLEN J F, KREMER S C.A Field Guide to Dynamical Recurrent Neural Networks. Piscataway:Wiley-IEEE Press, 2001:237-243.
[10]
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.