Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yurong, Cai Kangfeng, Tang Yue. STUDY AND NEW DESIGN METHOD FOR CHEVRON-BRACED STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 116-121,130. doi: 10.13204/j.gyjz201011028
Citation: ZHENG Shaoqiang, CHEN Yeqiang, LIU Ronggui, WANG Jinyuan. Probabilistic Durability Analysis of Concrete Structure in Marine Environment[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 165-173. doi: 10.13204/j.gyjzG20090803

Probabilistic Durability Analysis of Concrete Structure in Marine Environment

doi: 10.13204/j.gyjzG20090803
  • Received Date: 2020-09-08
  • Probabilistic analysis on the durability of the concrete structure in the marine environment of Lianyungang Wharf was carried out. A time-varying probability analysis method for predicting the service life of concrete structures was adopted. A durability evaluation model of concrete structures considering the statistical characteristics of parameters was established. Combined with the long-term field inspection data of Lianyungang Wharf and domestic and foreign references, the statistical characteristics of the model parameters were analyzed in detail. Monte Carlo simulation method was used to calculate the failure probability and reliability index of concrete structure under different exposure time. A probability analysis method was proposed that comprehensively considers Standard for Design of Concrete Structure Durability (GB/T 50476-2019), optimal reliability, and the difference in reliability indicators. The influence of concrete protective layer thickness and chloride ion diffusion coefficient on the service life of concrete structures was studied. The research results show that the concrete protective layer thickness and the chloride diffusion coefficient have an important influence on the service life of the concrete structure. In contrast, the service life of the concrete structure is more sensitive to changes of the concrete protective layer thickness.
  • [1]
    YU B, NING C L, LI B. Probabilistic durability assessment of concrete structures in marine environments: reliability and sensitivity analysis[J]. China Ocean Engineering, 2017, 31(1):63-73.
    [2]
    CAI R, HAN T, LIAO W, et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning[J/OL]. Cement and Concrete Research, 2020, 136[2020-06-24].https://doi.org/10.1016/j.cemconres.2020.106164.
    [3]
    ZHANG Y, ZHOU X, ZHANG Y, et al. Randomness of bidirectional chloride corrosion of sluice gate and time tocorrosion initiation of reinforcement in a strong tidal environment[J/OL]. Construction and Building Materials, 2019, 227[2019-02-16].https://doi.org/10.1016/j.conbuildmat.2019.116707.
    [4]
    LI D, LI L Y, WANG X. Chloride diffusion model for concrete in marine environment with considering binding effect[J]. Marine Structures, 2019, 66:44-51.
    [5]
    CAO Y, GEHLEN C, ANGST U, et al. Critical chloride content in reinforced concrete: an updated review considering Chinese experience[J]. Cement and Concrete Research, 2019,117:58-68.
    [6]
    VIEIRA D R, RIBEIRO M A L, CALMON J L, et al. Service life modeling of a bridge in a tropical marine environment for durable design[J]. Construction & Building Materials, 2018, 163:315-325.
    [7]
    JIN Z, ZHAO X, ZHAO T, et al. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones[J]. Construction and Building Materials, 2018, 177:170-183.
    [8]
    ZHANG J H, ZHAO J, ZHANG Y,et al. Instantaneous chloride diffusion coefficient and its time dependency of concrete exposed to a marine tidal environment[J]. Construction and Building Materials, 2018,167:225-234.
    [9]
    LI Q W, YI X Y. Surface deterioration analysis for probabilistic durability design of RC structures in marine environment[J]. Structural Safety, 2018, 75:13-23.
    [10]
    ZHANG H. Durability reliability analysis for corroding concrete structures under uncertainty[J]. Mechanical Systems and Signal Processing, 2018, 101:26-37.
    [11]
    SAMARAKOON M K, SELENSMIND J. Condition assessment of reinforced concrete structures subject to chloride ingress: a case study of updating the model prediction considering inspection data[J]. Cement & Concrete Composites, 2015(60):92-98.
    [12]
    BEUSHAUSEN H, TORRENT R, ALEXANDER M G. Performance-based approaches for concrete durability: state of the art and future research needs[J]. Cement and Concrete Research, 2019(119):11-20.
    [13]
    XU Q, SHI D, SHAO W. Service life prediction of RC square piles based on time-varying probability analysis[J/OL]. Construction and Building Materials, 2019,227[2020-12-14]. https:doi.org/10.1016/j.conbuildmat.2019.116824.
    [14]
    王胜年,田俊峰,范志宏.基于暴露试验和实体工程调查的海工混凝土结构耐久性寿命预测理论和方法[J].中国港湾建设, 2010(增刊1):68-74.
    [15]
    范志宏,王成启,李俊毅,等.海工混凝土结构的耐久性原型调查研究[J].中国港湾建设, 2010(增刊1):64-67.
    [16]
    PANG L, LI Q. Service life prediction of RC structures in marine environment using long term chloride ingress data: comparison between exposure trials and real structure surveys[J]. Construction & Building Materials, 2016, 113(15):979-987.
    [17]
    钟小平,金伟良,王毅.港口工程混凝土结构可变作用取值标准[J].浙江大学学报(工学版), 2013(10):139-147.
    [18]
    FANG Q, FRANCOS O, ZHU W J, et al. Influence of long-term chloride diffusion in concrete and the resulting corrosion of reinforcement on the serviceability of RC beams[J]. Cement & Concrete Composites, 2016(71):144-152.
    [19]
    LI Q, LI K, ZHOU X, et al. Model-based durability design of concrete structures in Hong Kong-Zhuhai-Macau sea link project[J]. Structural Safety, 2015(53):1-12.
    [20]
    OTHMEN I, BONNET S, SCHOEFS F. Statistical investigation of different analysis methods for chloride profiles within a real structure in a marine environment[J]. Ocean Engineering, 2018, 157(1):96-107.
    [21]
    WANG X H, BASTIDAS A E, GAO Y. Probabilistic analysis of chloride penetration in reinforced concrete subjected to pre-exposure static and fatigue loading and wetting-drying cycles[J]. Engineering Failure Analysis, 2018(84):205-219.
    [22]
    LI K F, ZHANG D D, LI Q W, et al. Durability for concrete structures in marine environments of HZM project: design, assessment and beyond[J]. Cement and Concrete Research, 2018(115):545-558.
    [23]
    YANG L F, CAI R, YU B. Investigation of computational model for surface chloride concentration of concrete in marine atmosphere zone[J]. Ocean Engineering, 2017, 138(1):105-111.
    [24]
    YANG C, LI L, LI J. Service life of reinforced concrete seawalls suffering from chloride attack: theoretical modelling and analysis[J/OL]. Construction and Building Materials, 2020, 263[2020-12-01]. https://doi.org/10.1016/j.conbuildmat.2020.120172.
    [25]
    DA B, YU H, MA H, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction & Building Materials, 2016(123):47-58.
    [26]
    PAPAKONSTANTINOU K G, SHINOZUKA M. Probabilistic model for steel corrosion in reinforced concrete structures of large dimensions considering crack effects[J]. Engineering Structures, 2013, 57(11):306-326.
    [27]
    张建强. 混凝土氯离子侵蚀的概率分析[J].结构工程师, 2009, 25(4):48-52.
    [28]
    徐现正.海洋环境下水下区预应力混凝土构件氯盐侵蚀效应相似关系研究[D].镇江:江苏大学,2017.
    [29]
    延永东,刘荣桂,陆春华,等.沿海服役混凝土结构氯离子质量分数检测和分析[J].水利水运工程学报, 2018(4):106-111.
    [30]
    VAL D V, STEWART M G. Life-cycle cost analysis of reinforced concrete structures in marine environments[J]. Structural Safety, 2003, 25(4):343-362.
    [31]
    WANG C J, ZHANG G Z, LIU K X, et al. Research on service life prediction model of concrete structure of sea-crossing bridge[J]. Journal of Wuhan University of Technology, 2010(17):141-146.
    [32]
    RYAN P C, O’CONNOR A J. Probabilistic analysis of the time to chloride induced corrosion for different self-compacting concretes[J]. Construction & Building Materials, 2013, 47(10):1106-1116.
    [33]
    SAASSOUH B, LOUNIS Z. Probabilistic modeling of chloride-induced corrosion in concrete structures using first-and second-order reliability methods[J]. Cement & Concrete Composites, 2012, 34(9):1082-1093.
    [34]
    BASTIDAS-ARTEAGA E, STEWART M G. Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion[J]. Structural Safety, 2015(52):40-53.
    [35]
    VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333.
    [36]
    LOUNIS Z. Probabilistic modeling of chloride contamination and corrosion of concrete bridge structures[C]//Fourth International Symposium on Uncertainty Modeling and Analysis, 2003. IEEE: 2003.
    [37]
    VAL D V, STEWART M G. Life-cycle cost analysis of reinforced concrete structures in marine environments[J]. Structural Safety, 2003, 25(4):343-362.
    [38]
    LU Z H, ZHAO Y G, YU Z W, et al. Probabilistic evaluation of initiation time in RC bridge beams with load-induced cracks exposed to de-icing salts[J]. Cement & Concrete Research, 2011, 41(3):365-372.
    [39]
    钟小平,金伟良,张宝健.氯盐环境下混凝土结构的耐久性设计方法[J].建筑材料学报,2016(3):544-549.
    [40]
    WU H R, LYU Q F, JIN W L.A state-of-the-art review on freeze-thaw damage characteristics of concrete under environmental actions[J]. Journal of Southeast University(English Edition), 2018, 34(1):81-89.
    [41]
    NOGUEIRA C G, LEONEL E D. Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress[J]. Engineering Failure Analysis, 2013(31):76-89.
    [42]
    WU L, LI W, YU X. Time-dependent chloride penetration in concrete in marine environments[J]. Construction and Building Materials, 2017, 152(15):406-413.
    [43]
    钟小平,金伟良.混凝土结构全寿命性能设计理论框架研究[J].工业建筑,2013,43(8):1-9.
  • Relative Articles

    [1]QIAO Hongxia, LI Aoyang, LI Jiangchuan, FU Yong, ZHU Feifei. RESEARCH ON DURABILITY OF FIBER REINFORCED CONCRETE BASED ON WIENER DEGRADATION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 165-169. doi: 10.13204/j.gyjzG20062808
    [2]GUO Hongchao, ZHANG Sijia, LI Tongyu, ZHANG Dawei, LI Yanlong, LIU Yunhe. RESEARCH ON MECHANICAL PROPERTY DEGRADATION OF CORRODED Q690 HIGH-STRENGTH STEEL IN THE MARINE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 184-189,125. doi: 10.13204/j.gyjzG19122508
    [3]HAN Yudong, DING Xiaoping, HAO Tingyu, GUO Dong, HOU Dongwei. CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 186-192,120. doi: 10.13204/j.gyjzG20042507
    [4]NING Xiliang, WANG Wanping, HAO Shuai, ZHAO Zishun, ZHANG Fashan. EFFECT OF DIFFERENT FIBERS ON FROST RESISTANCE OF CONCRETE UNDER MULTIPLE FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 122-128. doi: 10.13204/j.gyjzG19110401
    [5]Ma Hui, Xue Jianyang, Lin Jianpeng, Wang Gang, Lei Siwei. RELIABILITY ANALYSIS ON SHEAR CAPACITY OF STEEL RECYCLED AGGREGATE CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 7-11. doi: 10.13204/j.gyjz201309001
    [6]Wang Jianmin, Liu Guanguo, Lei Xiao, Li Di, Ma Hu. EXPERIMENTAL STUDY ON THE ANTI-CHLORIDE ION PERFORMANCE OF CONCRETE IN SALT SPRAY ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 89-91,125. doi: 10.13204/j.gyjz201311020
    [7]Zhao Hui, Zhang Yamei, Ming Jing. STUDY ON CONCRETE DURABILITY OF DIFFERENCE STRUCTURAL REGIONS UNDER MARINE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 86-90,64. doi: 10.13204/j.gyjz201307020
    [8]Wang Mingfang, Sun Yuyong. EXPERIMENTAL STUDY ON SALIFICATION EROSION RESISTANCE DURABILITY OF HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 127-130. doi: 10.13204/j.gyjz201206027
    [9]Wang Chenfei, Niu Ditao. RESEARCH ON THE DURABILITY OF POLYPROPYLENE FIBER CONCRETE UNDER FREEZE-THAW DAMAGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 137-139,153. doi: 10.13204/j.gyjz201201026
    [10]Luo Xiao-yong, Zou Hong-bo, Huang Su-hui. SOAKING EXPERIMENTAL STUDY ON CONCRETE STRUCTURE OF RESISTING CHLORIDE ION ERODING UNDER DIFFERENT STRESS STATES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 110-115. doi: 10.13204/j.gyjz201209024
    [11]Sui Lili, Quan Xinrui, Xing Feng, Zhang Hongyuan. STATE-OF-THE-ART OF RESEARCH ON DURABILITY OF POST-TENSIONED CONCRETE BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 105-111. doi: 10.13204/j.gyjz201101025
    [12]Qiao Hongxia, Zhou Mingru, Zhu Yanpeng, He Zhongmao. DESIGN AND CHOICE OF DURABILITY ASSESSMENT PARAMETER OF CONCRETE IN SALTY SOIL REGION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 27-30,78. doi: 10.13204/j.gyjz201006007
    [13]Wang Lei, Zhao Yanlin. RESEARCH ON THE DURABILITY OF CORRODED RC BEAMS STRENGTHENED WITH CARBON FIBERS IN MARINE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 120-124. doi: 10.13204/j.gyjz200908029
    [14]Li Shengyong, Zhang Zhe, Gong Jinxin. A NEW DURABILITY DESIGN METHOD FOR CONCRETE STRUCTURES BASED ON EQUIVALENT RESISTANCE RELIABILITY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 77-81. doi: 10.13204/j.gyjz200708020
    [15]Sun Daosheng, Deng Min, Tang Mingshu. STUDY ON THE DURABILITY OF THE FIBER AND HYBRID FIBER REINFORCED EXPANSIVE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 69-71,47. doi: 10.13204/j.gyjz200504020
    [16]Zhang Leishun, Wang Juan, Huang Qiufeng, Deng Yu. EXPERIMENTAL STUDY ON FROST-RESISTANT DURABILITY OF RECYCLED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 64-66,45. doi: 10.13204/j.gyjz200509017
    [17]Zhan Binggen, Sun Wei, Xu Zhongzi, Deng Min. RESEARCH ON CONCRETE EXPANSION BEHAVIOR SUBJECTED TO CHLORIDE CORROSION AND ALKALI-AGGREGATE REACTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 77-80. doi: 10.13204/j.gyjz200502021
    [18]Zhou Xingang, Chu Mingjin, Wu Jianglong, Li Qiang, Sui Zhijun, Gao Zhongqin. DURABILITY OF CONCRETE STRUCTURES EXPOSED TO UNFAVORABLE ATMOSPHERE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 66-68,65. doi: 10.13204/j.gyjz200404019
    [19]Xiao Jianzhuang, Lu Fuhai, Sun Zhenping. STUDY ON CHLORIDE ION PERMEABILITY OF HIGH PERFORMANCE CONCRETE WITH DESALTED SEA SAND[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 4-6,14. doi: 10.13204/j.gyjz200405002
  • Cited by

    Periodical cited type(3)

    1. 李庆,赵健,蒋琼明. 基于现场取样试验的混凝土结构寿命预测. 水运工程. 2024(02): 30-34+59 .
    2. 陈玉梅,刘荣桂,陈业强,郑少强,刘嘉琪. 基于多层次模糊综合评价模型的氯盐环境中混凝土结构耐久性评估. 腐蚀与防护. 2024(06): 87-95 .
    3. 闵红光,胡俊杰,姚志东,闫贵海,赵木子. 滨海环境下既有混凝土结构耐久性分析与评定. 建筑科学. 2024(05): 176-185 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.3 %FULLTEXT: 8.3 %META: 87.0 %META: 87.0 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.0 %其他: 12.0 %Central District: 5.6 %Central District: 5.6 %北京: 4.6 %北京: 4.6 %十堰: 0.9 %十堰: 0.9 %天津: 2.8 %天津: 2.8 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %广州: 3.7 %广州: 3.7 %廊坊: 0.9 %廊坊: 0.9 %张家口: 3.7 %张家口: 3.7 %扬州: 0.9 %扬州: 0.9 %新德里: 0.9 %新德里: 0.9 %昆明: 1.9 %昆明: 1.9 %杭州: 7.4 %杭州: 7.4 %海口: 0.9 %海口: 0.9 %温州: 2.8 %温州: 2.8 %漯河: 2.8 %漯河: 2.8 %绍兴: 0.9 %绍兴: 0.9 %芒廷维尤: 25.9 %芒廷维尤: 25.9 %西宁: 1.9 %西宁: 1.9 %贵阳: 0.9 %贵阳: 0.9 %赤峰: 0.9 %赤峰: 0.9 %运城: 7.4 %运城: 7.4 %郑州: 2.8 %郑州: 2.8 %长沙: 5.6 %长沙: 5.6 %其他Central District北京十堰天津常州常德广州廊坊张家口扬州新德里昆明杭州海口温州漯河绍兴芒廷维尤西宁贵阳赤峰运城郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads(5) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return