Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 10
Feb.  2022
Turn off MathJax
Article Contents
ZHAN Tao. RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 184-188,133. doi: 10.13204/j.gyjzG20081201
Citation: ZHAN Tao. RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 184-188,133. doi: 10.13204/j.gyjzG20081201

RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS

doi: 10.13204/j.gyjzG20081201
  • Received Date: 2020-08-12
    Available Online: 2022-02-21
  • To solve the problems of too many parameters, difficult to obtain and longer time-consuming in numerical simulations of ultimate displacement in the process of tunnelling, the Gaussian process algorithm (GP) combined with the differential evolutionary algorithm (DE) was adopted. The selection of GP hyperparameters in the training process was realized by the DE instead of the conjugated gradient method, which solved the problem that the conjugated gradient method was too dependent on the initial values and easy to fall into local optimal, and improved generalization performances of the GP. A DE-GP method for predicting ultimate displacement during tunnelling was proposed, which simplified the calculation process of ultimate displacement. The ultimate displacement of a highway tunnel during tunnelling was predicted and analyzed. The results showed that the DE-GP coupled model had a better generalization performances than the GP and the LS-SVM algorithm; the forecasting results of ultimate displacement agreed well with the numerical calculations, and the computational efficiency had obviously improved; the method provided a new way to calculate the ultimate displacement.
  • loading
  • [1]
    朱永全.隧道稳定性位移判别准则[J].中国铁道科学, 2001, 22(6):80-83.
    [2]
    李晓红, 王宏图, 贾剑青, 等.隧道及地下工程围岩稳定性及可靠性分析的极限位移判别[J].岩土力学, 2005, 26(6):850-854.
    [3]
    朱永全, 张素敏, 景诗庭.铁路隧道初期支护极限位移的意义及确定[J].岩石力学与工程学报, 2005, 24(9):1594-1598.
    [4]
    徐东强, 燕鹏, 李彦奇, 等.公路山岭隧道初期支护极限相对位移的确定[J].隧道建设, 2017(9):34-40.
    [5]
    冯夏庭.智能岩石力学导论[M].北京:科学出版社, 2000:111-116.
    [6]
    姜谙男.基于PSO-SVM非线性时序模型的隧洞围岩变形预报[J].岩土力学, 2007(6):1176-1180.
    [7]
    张可能, 胡达, 何杰, 等.基于Kriging时空统一模型的隧道动态施工位移预测[J].中南大学学报(自然科学版), 2017, 48(12):3328-3334.
    [8]
    祝彦知, 魏风冉.盾构隧道地表沉降模糊随机可靠度分析[J].工业建筑, 2017, 47(7):114-116.
    [9]
    肖和华, 曾浩中.基于多模型加权组合算法的公路边坡位移预测[J].公路工程, 2016, 41(2):14-18.
    [10]
    李兴盛.基于DE-GP协同优化算法的隧道极限位移预测[J].现代隧道技术, 2021, 58(2):78-85.
    [11]
    刘开云, 方昱, 刘保国, 等.隧道围岩变形预测的进化高斯过程回归模型[J].铁道学报, 2011, 33(12):101-106.
    [12]
    苏国韶, 张克实, 吕海波.位移反分析的粒子群优化-高斯过程协同优化方法[J].岩土力学, 2011, 32(2):510-515.
    [13]
    刘开云, 方昱, 刘保国.基于进化高斯过程回归算法的隧道工程弹塑性模型参数反演[J].岩土工程学报, 2011(6):883-889.
    [14]
    STORN R, PRICE K.Differential Evolution:A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization, 1997(11):341-369.
    [15]
    马莎, 肖明.基于突变理论和监测位移的地下洞室稳定评判方法[J].岩石力学与工程学报, 2010, 29(增刊2):3812-3819.
    [16]
    左清军, 吴立, 陆中玏, 等.浅埋偏压隧道洞口段软弱围岩失稳突变理论分析[J].岩土力学, 2015(增刊2):424-430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return