Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Fan Dewei, Li Dayong, Zhang Xuechen. ANALYSIS OF VERTICAL DISPLACEMENT AND INNER FORCES IN BURIED PIPELINES CAUSED BY METRO TUNNELING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 85-89. doi: 10.13204/j.gyjz200909018
Citation: LIU Yanming, WANG Xiaofeng, ZHAO Yong. MEASUREMENT AND ANALYSIS OF EARLY-AGE CAMBER OF PRESTRESSED CONCRETE DOUBLETEES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 67-71. doi: 10.13204/j.gyjzG20080704

MEASUREMENT AND ANALYSIS OF EARLY-AGE CAMBER OF PRESTRESSED CONCRETE DOUBLETEES

doi: 10.13204/j.gyjzG20080704
  • Received Date: 2020-08-07
    Available Online: 2021-10-27
  • The cambers of three prestressed concrete doubletees with concrete strength grade of C50 at the moment of prestressed tendons releasing and the age of 7 days were measured, meanwhile, the elastic modulus and compressive strength of the concrete specimens with the same material and curing condition were tested. The result showed that when steam curing for 30 hours or natural curing for 3 days, the compressive strength of the concrete could reach 80% of the designed concrete strength grade value, but the elastic modulus of the concrete only reached 38~55% of the standard value. The elastic modulus of the tested concrete with an age of 7 days could reach its standard value. Compared to natural-cured concrete, the compressive strength and elastic modulus of steam-cured concrete developed more rapidly. The time-effect model of concrete elastic modulus within the age of 7 days was obtained by regression analysis. Then a simulation analysis of the cambers at the age of 7 days was carried out based on the model of creep and shrinkage in MC 2010, and the calculated values were almost coincident with the measured values.
  • [1]
    王茂宇,郑毅敏,赵勇.中美预制预应力混凝土双T板构件对比[J].混凝土与水泥制品,2014(8):42-45.
    [2]
    中华人民共和国住房和城乡建设部.混凝土结构工程施工质量验收规范:GB 50204-2015[S].北京:中国建筑工业出版社,2015.
    [3]
    张建仁,王海臣,杨伟军.混凝土早期抗压强度和弹性模量的试验研究[J].中外公路,2003(3):89-92.
    [4]
    冯太坤.混凝土的强度与抗压弹性模量增长变化初探[J].中国高新技术企业,2007(4):158.
    [5]
    International Federation for Structural Concrete. fib Model Code for Concrete Structures 2010:MC 2010[S]. Berlin, Germany:Wilhelm Ernst & Sohn, 2013.
    [6]
    吴志寰.早强剂对混凝土强度和弹性模量的影响[J].铁道建筑,2005(5):93-94.
    [7]
    中华人民共和国住房和城乡建设部.混凝土结构工程施工规范:GB 50666-2011[S].北京:中国建筑工业出版社,2012.
    [8]
    王薇,李亚楠.早强剂对混凝土早期抗压强度影响试验研究[J].建材发展导向,2019,17(4):93-95.
    [9]
    中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2011.
    [10]
    中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准:GB/T 50081-2016[S].北京:中国建筑工业出版社,2016.
    [11]
    陈洪光,许将.C50泵送混凝土弹性模量影响因素的试验研究[J].隧道建设,2012,32(6):802-805.
    [12]
    YOUAKIM S A, GHALI A, HIDA S E, et al. Prediction of Long-Term Prestress Losses[J]. PCI Journal, 2007, 52(2):116-130.
  • Relative Articles

    [1]YI Ju, WANG Lei, LEI Ming, HU Zhuo, TU Ronghui. Research on Transfer Length of Pretensioned Prestressed Concrete Members Under Corrosion[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 44-50. doi: 10.13204/j.gyjzG22042520
    [2]WANG Xiaofeng, NA Zhenya, ZHAO Guangjun, HAN Weitao. Advances in Structural Performance Research and Engineering Application of Prestressed Concrete Double Tees[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 12-20. doi: 10.13204/j.gyjzG22082911
    [3]SUN Yu, WANG Qiang, TONG Yixuan, ZHU Hong. INFLUENCE OF ADDITIONAL Al-RIBS ON LONG-TERM STIFFNESS OF PRE-TENSIONED CONCRETE BEAM REINFORCED WITH PRESTRESSED FRP BARS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 9-13. doi: 10.13204/j.gyjzG21042510
    [4]GE Yipeng, XIONG Xueyu. FINITE ELEMENT ANALYSIS OF BENDING TEST FOR PRESTRESSED CONCRETE DOUBLE TEES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 21-27,52. doi: 10.13204/j.gyjzg21061511
    [5]LU Jingfu, SUN Zhanqi, QIU Yong, LI Zhongwen, ZHOU Zhenwei, HUANG Chaojun. EXPERIMENTAL RESEARCH ON MECHANICS OF LONG-SPAN AND HEAVY-LOAD PRESTRESSED CONCRETE DOUBLE-TEES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 62-67. doi: 10.13204/j.gyjzG19111005
    [6]Deng Lang-ni, Zhang Peng, Yang Fan, Kang Kan. STUDY ON PRESTRESS LOSS OF CONCRETE STRUCTURE STRENGTHENED WITH PRESTRESSED CFRP PLATES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 71-74. doi: 10.13204/j.gyjz201209016
    [7]Yao Xihong, Yang Jianxin, Liu Mingzhou, Wang Hongjun. STUDY ON STRESS INCREMENT OF TENDON FOR EXTERNALLY PRESSTRESSED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 136-139. doi: 10.13204/j.gyjz201211029
    [8]Huan Xianbin, En Wenhai. STUDY ON HOLLOW BEAM TECHNOLOGY OF THE PRETENSIONED PRESTRESSING CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 68-70. doi: 10.13204/j.gyjz200905014
    [9]Song Xiaoruan, Zhang Yankun, Si Jian. CALCULATION OF YOUNG'S MODULUS FOR LYTAG CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 61-63. doi: 10.13204/j.gyjz200602018
    [10]Xue Wei-chen, Zeng Lei. STATE-OF-THE-ART REPORT ON REINFORCED CONCRETE BEAMS STRENGTHENED WITH CFRP LAMINATES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 12-14. doi: 10.13204/j.gyjz200604004
    [11]Yue Qing-rui, Li Qing-wei, Yang Yong-xin. RESEARCH ON CONCRETE BEAM'S BEHAVIOR ON RELEASING PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 1-4. doi: 10.13204/j.gyjz200604001
    [12]Wang Xinling, Zhao Gengqi, Yang Guangning. THE ARRANGEMENT AND ANALYSIS OF PRESTRESSING REINFORCEMENTS FOR PRESTRESSED CONCRETE STATICALLY INDETERMINATE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 39-41. doi: 10.13204/j.gyjz200406013
    [13]Gao Danying, Tang Jiyu, Zhao Jun. A EXPERIMENTAL STUDY ON ELASTIC MODULUS OF FIBER REINFORCED HIGH-STRENGTH CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 47-49. doi: 10.13204/j.gyjz200410014
  • Cited by

    Periodical cited type(6)

    1. 张延年,郭晓钰,王广林,刘晓阳,王铁源,于洋,刘文亮. 玻璃纤维混凝土抗折性能及弯曲韧性试验研究. 混凝土. 2024(01): 1-5 .
    2. 魏瑞丽,李泽文,刘德华,李育康,王瑞,王宇杰. 有机纤维增强水泥基复合材料研究进展. 当代化工. 2024(02): 460-463 .
    3. 刘煜辉,郑文珂,赵玉凯. 纤维参数对水泥基复合材料力学性能影响研究综述. 河南科技. 2024(05): 67-70 .
    4. 许丽,张强. 铁尾矿粉水泥基材料的性能实验研究. 无机盐工业. 2023(06): 116-123 .
    5. 韦琛,杨成军,黄美程,刘倩倩,赖真真,钟杨. 铁尾矿对混凝土结构与性能的影响. 广东建材. 2023(08): 20-24 .
    6. 张少峰,牛荻涛. 纤维尾矿砂再生混凝土基本力学性能及计算方法. 混凝土. 2023(09): 7-12+15 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 89.2 %META: 89.2 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %China: 1.0 %China: 1.0 %[]: 1.0 %[]: 1.0 %北京: 9.8 %北京: 9.8 %南京: 1.0 %南京: 1.0 %台州: 1.0 %台州: 1.0 %宁德: 5.9 %宁德: 5.9 %常德: 2.0 %常德: 2.0 %广州: 1.0 %广州: 1.0 %张家口: 1.0 %张家口: 1.0 %晋城: 1.0 %晋城: 1.0 %朝阳: 1.0 %朝阳: 1.0 %杭州: 8.8 %杭州: 8.8 %济南: 1.0 %济南: 1.0 %深圳: 2.9 %深圳: 2.9 %滨州: 1.0 %滨州: 1.0 %漯河: 1.0 %漯河: 1.0 %珠海: 1.0 %珠海: 1.0 %石家庄: 1.0 %石家庄: 1.0 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 1.0 %芝加哥: 1.0 %西宁: 11.8 %西宁: 11.8 %贵阳: 2.0 %贵阳: 2.0 %运城: 14.7 %运城: 14.7 %邯郸: 1.0 %邯郸: 1.0 %郑州: 2.9 %郑州: 2.9 %重庆: 2.0 %重庆: 2.0 %其他China[]北京南京台州宁德常德广州张家口晋城朝阳杭州济南深圳滨州漯河珠海石家庄芒廷维尤芝加哥西宁贵阳运城邯郸郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (91) PDF downloads(2) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return