Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YU Hongran, WANG Yan, AN Qi. SEISMIC PERFORMANCE ANALYSIS OF ANCHORING PREFABRICATED WALL-BEAM JOINT OF STEEL TUBE BUNDLE COMPOSITE SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 84-94. doi: 10.13204/j.gyjzG20100401
Citation: LIN Yongjun, XU Wenqiang, ZHANG Xianzhao, LIU Kaiqi. SHEAR MECHANISM AND BOND STRENGTH CALCULATION OF NEW-TO-OLD CONCRETE INTERFACE WITH ANCHOR BARS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 72-83. doi: 10.13204/j.gyjzG20080511

SHEAR MECHANISM AND BOND STRENGTH CALCULATION OF NEW-TO-OLD CONCRETE INTERFACE WITH ANCHOR BARS

doi: 10.13204/j.gyjzG20080511
  • Received Date: 2020-08-05
    Available Online: 2021-10-27
  • The shear bond performance of new-to-old concrete interface with anchor bars is different from that of new-to-old concrete interface without anchor bars. The existing calculation equations for the shear strength of new-to-old concrete interface are mostly based on shear friction theory or fitting the test data. The concrete structure design codes for different countries also propose their shear strength calculation formulas. A total of 85 test data of new-to-old concrete interface with anchor bars were used to verify the applicability for the existing typical recipes. The results showed that these methods were either too conservative or lead to structural unsafe. According to the stress characteristics of the new-to-old concrete interface with anchor bars, the spring-friction block model for the shear transfer of new-to-old concrete interface with anchor bars was established. Meanwhile, the mechanism of shear transfer in the whole process of the interface was thoroughly analyzed by combining with the existing shear test load-slip curve. The results indicated that the shear bearing capacity of new-to-old concrete interface with anchor bars could be divided into four parts:the cohesive force of the new-to-old concrete interface, the mechanical occlusal force of groove, the pin bolt force of anchor bars, and the friction force. Based on the theoretical analysis of the calculation methods of four parts, the calculation formula for the shear strength of new-to-old concrete interface with anchor bars was proposed. The applicability of the proposed formula for calculating the shear bond strength of new-to-old concrete interface with anchor bars was verified by using 20 sets of test data. The average value and standard deviation of the ratio of experimental value to the calculated value were 1.182 and 0.305, respectively. Compared with the existing calculation methods, it was shown that the calculated results of the equation proposed in the paper were in the best agreement with the experimental results, and the discreteness was relatively low.
  • [1]
    赵志方, 赵国藩, 刘健, 等.新老混凝土黏结抗拉性能的试验研究[J]. 建筑结构学报, 2001, 22(2):51-56.
    [2]
    肖成志, 田稳苓, 刘波,等.设置界面构造锚筋的新老混凝土黏结性能试验研究[J]. 建筑结构学报, 2011, 32(1):75-81.
    [3]
    JULIO E N B S, DIAS-DA-COSTA D, BRANCO F A B, et al. Accuracy of Design Code Expressions for Estimating Longitudinal Shear Strength of Strengthening Concrete Overlays[J]. Engineering Structures, 2010, 32(8):2387-2393.
    [4]
    HARRIES K A, ZENO G, SHAHROOZ B. Toward an Improved Understanding of Shear-Friction Behavior[J]. ACI Structural Journal, 2012, 109(6):835-844.
    [5]
    ANDERSON A R. Composite Designs in Precast and Cast-in-Place Concrete[J]. Progressive Architecture, 1960, 41(9):172-179.
    [6]
    HOFBECK J A, IBRAHIM I O, MATTOCK A H. Shear Transfer in Reinforced Concrete[J]. ACI Journal, 1969, 66(2):119-128.
    [7]
    ZIA P. Torsional Strength of Prestressed Concrete Members[J]. ACI Journal, 1961, 57(10):1337-1360.
    [8]
    KAHN L F, MITCHELL A D. Shear Friction Tests with High-Strength Concrete[J]. ACI Structure Journal, 2002, 99(1):98-103.
    [9]
    郑建岚, 陈锋. 自密实混凝土与老混凝土黏结剪切强度的塑性极限分析[J]. 工程力学, 2008, 25(8):164-168.
    [10]
    王振领. 新老混凝土黏结理论与试验及在桥梁加固工程中的应用研究[D]. 成都:西南交通大学, 2007.
    [11]
    SANTOS P M D, JULIO E N B S. A State-of-the-Art Review on Shear-Friction[J]. Engineering Structures, 2012, 45(12):435-448.
    [12]
    ROBERT A B, RAMON L C, JAMES O J. Shear Transfer Across New and Existing Concrete Interface[J]. ACI Structural Journal, 1989, 86(4):383-393.
    [13]
    BIRKELAND P W, BIRKELAND H W. Connections in Precast Concrete Construction[J]. ACI Journal Proceedings, 1966, 63(3):345-368.
    [14]
    WALRAVEN J, FRÉNAY J, PRUIJSSERS A. Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members[J]. PCI Journal, 1987, 32(1):66-84.
    [15]
    LOOV R E, PATNAIK A K. Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface[J]. PCI Journal, 1994, 39(1):48-69.
    [16]
    RANDL N. Investigations on Transfer of Forces Between Old and New Concrete at Different Joint Roughness[D]. Innsbruck:University of Innsbruck, 1997.
    [17]
    叶果. 新老混凝土界面抗剪性能研究[D]. 重庆:重庆大学, 2011.
    [18]
    JULIO E N B S, BRANCO F A, SILVA V D. Concrete-to-Concrete Bond Strength Influence of the Roughness of the Substrate Surface[J]. Construction and Building Materials, 2004, 18(9):675-681.
    [19]
    张雷顺, 闫国新, 张晓磊, 等. 沟槽式新老混凝土黏结面抗剪强度试验研究[J]. 郑州大学学报(工学版), 2006, 27(2):24-28.
    [20]
    常鹏飞. 新旧混凝土界面的连接方法及动力性能研究[D]. 西安:西安科技大学, 2012.
    [21]
    邢强. 新旧混凝土界面的连接方法及受力性能研究[D].西安:西安科技大学, 2012.
    [22]
    中华人民共和国城乡和住房建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2015.
    [23]
    American Concrete Institute Committee. Building Code Requirements for Structural Concrete and Commentary on Building Code Requirements for Structural Concrete:ACI 318-14[S]. Farmington Hills:American Concrete Institute, 2014.
    [24]
    Canadian Standards Association. Design of Concrete Structures:CSA A23.3-14[S]. Toronto:CSA 2014.
    [25]
    European Committee for Standardization. Design of Concrete Structures:Eurocode 2[S]. London:CEN, 2008.
    [26]
    International Federation for Structural Concrete. fib Model Code 2010, Model Code for Concrete Structures[S]. Lausanne:FIB, 2010.
    [27]
    AASHTO LRFD 2014, AASHTO LRFD Bridge Design Specifications[S]. Washington:American Association of State Highway and Transportation Officials, 2014.
    [28]
    潘传银, 石雪飞, 周可攀. 新、老混凝土黏结抗剪强度试验[J]. 交通科学与工程, 2014, 30(2):6-12.
    [29]
    黄璐. 植筋法新旧混凝土界面剪切强度的实用计算公式[C]//第25届全国结构工程学术会议论文集(第Ⅲ册). 包头:2016.
    [30]
    刘传奇. 新旧混凝土界面黏贴机理试验研究[D]. 西安:长安大学, 2014.
    [31]
    XIAO J Z, SUN C H, LANGE D A. Effect of Joint Interface Conditions on Shear Transfer Behavior of Recycled Aggregate Concrete[J]. Construction and Building Materials, 2016, 105(1):343-355.
    [32]
    王二花. 植筋法新老混凝土黏结面剪切性能试验研究[D]. 郑州:郑州大学, 2006.
    [33]
    胡铁明, 黄承逵, 陈小锋. 构造钢筋影响下新老混凝土结合面抗剪试验研究[J]. 混凝土, 2009, 233(3):26-28.
    [34]
    江志伟. 沟槽和植筋新旧混凝土界面抗剪性能试验研究[D]. 广州:广东工业大学, 2014.
    [35]
    HE Y, ZHANG X, HOOTON R D, et al. Effects of Interface Roughness and Interface Adhesion on New-to-Old Concrete Bonding[J]. Construction and Building Materials, 2017, 151(5):582-590.
    [36]
    SANTOS P M D, JULIO E N B S. A State-of-the-Art Review on Roughness Quantification Methods for Concrete Surfaces[J]. Construction and Building Materials, 2013, 38(1):912-923.
    [37]
    宋国华, 霍达, 王东炜, 等. 装配式大板结构竖向齿槽接缝受剪承载力设计[J]. 土木工程学报, 2003, 36(11):61-64.
    [38]
    张锡治, 马健, 韩鹏, 等. 装配式剪力墙齿槽式连接受剪性能研[J]. 建筑结构学报, 2017, 38(11):93-100.
    [39]
    DULACSKA H. Dowel Action of Reinforcement Crossing Cracks in Concrete[J]. ACI Journal, 1972, 69(12):754-757.
    [40]
    RANDL N. Design Recommendations for Interface Shear Transfer in Fib Model Code 2010[J]. Structural Concrete, 2013, 14(3):230-241.
    [41]
    MANSUR M A, VINAYAGAM T, TAN K H. Shear Transfer Across a Crack in Reinforced High-Strength Concrete[J]. ASCE Journal Materials Civil Engineering, 2008, 20(4):294-302.
    [42]
    方鑫. 沟槽植筋新旧混凝土(C30)结合面抗剪性能试验研究[D]. 广州:广东工业大学, 2016.
  • Relative Articles

    [1]TANG Lei, ZHOU Enquan. Seismic Performance of Precast Concrete Shear Walls Connected by Grouted Bellows and Confined with Overlapped Closed Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 79-86. doi: 10.13204/j.gyjzG21090907
    [2]CHONG Xun, CHEN Zixing, JIANG Qing, HUANG Junqi, LI Haoran, FANG Xiaowen, XIE Jinchen. Research on Seismic Performance of Prefabricated Concrete Shear Wall Structures with Bolt Connections[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 12-18,90. doi: 10.13204/j.gyjzG21012705
    [3]PANG Rui, WANG Lu, LIU Yuhao, WANG Yixiao, DING Shusu. Experimental Research on Seismic Performance Test of Prefabricated Steel-Concrete Composite Tube Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 84-90. doi: 10.13204/j.gyjzG20050712
    [4]ZHANG Liang, WU Bian, ZHANG Fengliang, LIU Yang. Anti-Seismic Performance of Composite Shear Walls of Concrete Filled Steel Tube Reinforced with Corrugated Steel Plates[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 146-155,138. doi: 10.13204/j.gyjzG22071409
    [5]WANG Weiyong, YANG Qibo, LIANG Zhanshuo, OU Ying, JIANG Xianchun. Seismic Response of the Joint Between Steel Truss Concrete Composite Shear Wall and Steel Coupling Beam[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 39-48. doi: 10.13204/j.gyjzG22040401
    [6]ZHENG Qizhen, LI Huiyan, LONG Libo, CHEN Gang. EXPERIMENTAL RESEARCH ON ASEISMIC PERFORMANCES OF PREFABRICATED SHEAR WALL CONNECTED BY UHPC[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 82-89. doi: 10.13204/j.gyjzG20042601
    [7]PANG Rui, WANG Yixiao, XU Zhu, WANG Lu, LEI Hongbing. RESEARCH ON SEISMIC PERFORMANCES OF PREFABRICATED SRCT SHEAR WALL STRUCTURE WITH HORIZONTAL CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 35-41. doi: 10.13204/j.gyjzG20032209
    [8]WANG Yixiao, PANG Rui, DING Shusu, XU Zhu, WANG Lu, LEI Hongbing. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIORS OF PREFABRICATED SRCT SHEAR WALLS WITH DIFFERENT DISTANCE TO THICKNESS RATIOS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 145-153,127. doi: 10.13204/j.gyjzG19102302
    [9]HAN Jianhong, ZHOU Guangen, SHU Ganping, ZHOU Xiongliang, QIN Ying, HE Yunfei. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF DOUBLE-SKIN MULTI-CAVITY COMPOSITE WALL WITH STEEL TRUSS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 13-18,50. doi: 10.13204/j.gyjz202003003
    [10]CHEN Weigang, ZHANG Huikai, ZHOU Xiongliang, SHU Ganping, ZHOU Guangen, QIN Ying. RESEARCH ON SEISMIC BEHAVIOR OF CONNECTIONS BETWEEN DOUBLE-SKIN MULTI-CAVITY OF COMPOSITE WALL WITH STEEL TRUSS AND H-SHAPED STEEL BEAM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 19-23,28. doi: 10.13204/j.gyjz202003004
    [11]Wu Jingshu, Zhang Xinbin, He Mi. INFLUENCE OF OPENING ON SEISMIC BEHAVIOR OF STEEL PLATE REINFORCED CONCRETE SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 30-35. doi: 10.13204/j.gyjz2001412006
    [12]Yuan Kang, Li Yingmin, Zhang Songbai. STUDY OF UNIDIRECTIONAL WALL FRAMES' INFLUENCE ON THE SEISMIC PERFORMANCE OF SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 37-41.
    [13]Wang Zejun, Kong Lingcang, Ren Jiafu. STUDY ON EFFECT OF GROUND WALL THICKNESS ON SEISMIC PERFORMANCE OF FRAME-SUPPORTED SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 42-45.
    [14]Cui Xiaoling, Liang Xingwen, Yang Penghui. SEISMIC BEHAVIOR OF HIGH PERFORMANCE CONCRETE SHEAR WALL WITH END COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 1-8. doi: 10.13204/j.gyjz201302001
    [15]Yang Dejian, Song Lei. EXPERIMENTAL STUDY ON THE ANTI-SEISMIC BEHAVIOR OF NEW TYPE SLIT HOLLOW DISSIPATING ENERGY SHEAR WALL OF REINFORCED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 37-40. doi: 10.13204/j.gyjz201009012
    [16]Chu Liusheng, Zhao Gengqi, Cai Haiyong. RESEARCH ON SEISMIC PERFORMANCE OF CORE WALL IN HYBRID STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 22-28. doi: 10.13204/j.gyjz200905005
    [17]Xue Suduo, Li Li, Cao Wanlin. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF HIGH STRENGTH CONCRETE SHEAR WALLS EMBEDDED POLYSTYRENE FOAM[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 29-32,46. doi: 10.13204/j.gyjz200905006
    [18]Zhang Jianwei, Cao Wanlin, Wang Zhihui, Tao Junping. SEISMIC PERFORMANCE OF MID-RISE RC COMPOSITE SHEAR WALLS WITH CONCEALED STEEL TRUSS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 101-105,110. doi: 10.13204/j.gyjz200908024
    [19]Yan Xiaohuan, Yan Qiwu. STUDY ON SEISMIC PERFORMANCE OF SHEAR WALLS IN TALL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 16-21. doi: 10.13204/j.gyjz200905004
    [20]Li Shuchun, Diao Bo, Su Youpo, Zhang Jing. EXPERIMENT ON ANTI-SEISMIC BEHAVIOR OF LIGHT GAUGE STEEL REINFORCED CONCRETE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 89-92. doi: 10.13204/j.gyjz200702022
  • Cited by

    Periodical cited type(3)

    1. 吴东平,周禹,李成玉. 装配式混凝土剪力墙-梁钢套筒节点性能试验研究. 混凝土与水泥制品. 2024(02): 70-75 .
    2. 陈群,王燕,安琦. 钢管束组合剪力墙端板节点单边高强螺栓连接性能研究. 钢结构(中英文). 2023(08): 22-33 .
    3. 杨国庆,彭有开,吴徽. Tilt-up建筑墙板-钢梁连接节点的受力性能有限元分析. 建筑结构. 2021(S2): 844-849 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.1 %FULLTEXT: 6.1 %META: 92.9 %META: 92.9 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.1 %其他: 7.1 %北京: 7.1 %北京: 7.1 %十堰: 1.0 %十堰: 1.0 %宜春: 2.0 %宜春: 2.0 %常德: 2.0 %常德: 2.0 %张家口: 3.1 %张家口: 3.1 %扬州: 2.0 %扬州: 2.0 %晋城: 1.0 %晋城: 1.0 %朝阳: 1.0 %朝阳: 1.0 %泸州: 3.1 %泸州: 3.1 %玉林: 2.0 %玉林: 2.0 %芒廷维尤: 18.4 %芒廷维尤: 18.4 %芝加哥: 1.0 %芝加哥: 1.0 %西宁: 21.4 %西宁: 21.4 %贵阳: 2.0 %贵阳: 2.0 %运城: 15.3 %运城: 15.3 %邯郸: 1.0 %邯郸: 1.0 %郑州: 2.0 %郑州: 2.0 %重庆: 2.0 %重庆: 2.0 %锡林郭勒盟: 1.0 %锡林郭勒盟: 1.0 %青岛: 4.1 %青岛: 4.1 %其他北京十堰宜春常德张家口扬州晋城朝阳泸州玉林芒廷维尤芝加哥西宁贵阳运城邯郸郑州重庆锡林郭勒盟青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(1) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return