Core Chinese Journal
Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 7
Nov.  2021
Turn off MathJax
Article Contents
Abdul Motalleb QAYTMAS, TIAN Yu, LU Dechun, DU Xiuli. INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 11-17. doi: 10.13204/j.gyjzG20072217
Citation: Abdul Motalleb QAYTMAS, TIAN Yu, LU Dechun, DU Xiuli. INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 11-17. doi: 10.13204/j.gyjzG20072217

INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING

doi: 10.13204/j.gyjzG20072217
  • Received Date: 2020-07-22
    Available Online: 2021-11-11
  • As a key index to judge the mechanical properties of soil, the relative density is also an important index for the classification of surrounding rock grades. It is of great significance to study the influence on stratum subsidence and stress during tunnelling. Based on the model test platform for shield tunnels developed by Beijing University of Technology, tunnelling tests were conducted in soil with different relative densities, the surface or stratum subsidence and stress during tunnelling were measured systematically. The test results showed that:with the increase of relative densities, the shapes of subsidence troughs for the stratum changed from the distribution shape of Gaussian Function to the triangular shape, the depth and width were smaller and smaller; the subsidence of the surface lagged more behind the process of being tunnelled; the stress paths at the arch crown and arch shoulder became steeper and steeper, that caused the obvious dilation in soils and brought about the above change laws in the shape of the the stratum subsidence troughs. Therefore, in simulations of tunnelling, it was necessary to consider the dilatancy of soil to ensure the rational predications on surface subsidence.
  • loading
  • [1]
    朱逢斌, 缪林昌, 林水仙. 砂土中盾构动态施工室内模型试验可行性研究[J]. 工业建筑, 2016, 46(4):88-92.
    [2]
    何洵, 李铀.隧道应力扰动区及其影响因素分析[J]. 铁道科学与工程学报, 2019, 16(11):2782-2790.
    [3]
    徐东强, 李彦奇, 燕鹏. 隧道不同开挖方式初期支护极限位移值[J]. 工业建筑, 2018, 48(2):110-115.
    [4]
    GALLI G, GRIMALDI A, LEONARDI A. Three-Dimensional Modelling of Tunnel Excavation and Lining[J]. Computers and Geotechnics, 2004, 31(3):171-183.
    [5]
    郑刚, 张扶正, 张天奇, 等. 盾构隧道开挖及补偿注浆对地层扰动影响的室内试验及数值模拟研究[J]. 岩土工程学报, 2016, 38(10):1741-1753.
    [6]
    杨志浩, 方勇, 杨斌, 等. 公路隧道下穿倾斜煤层采空区室内开挖模型试验[J]. 地下空间与工程学报, 2017, 13(4):974-981

    , 1055.
    [7]
    霍润科, 李茂达, 李静, 等. 偏压软弱围岩隧道不同施工方案的数值模拟及比较分析[J]. 工业建筑, 2015, 45(2):95-100.
    [8]
    刘纪峰, 刘波, 张会芝. 盾构隧道致地层沉降的物理模型试验研究[J]. 工业建筑, 2011, 41(3):91-98.
    [9]
    FARGNOLI V, BOLDINI D, AMOROSI A. TBM Tunnelling-Induced Settlements in Coarse-Grained Soils:The Case of the New Milan Underground Line 5[J]. Tunnelling and Underground Space Technology, 2013, 38:336-347.
    [10]
    王正兴, 缪林昌, 吕伟华. 砂土中隧道施工条件下管土相互作用的室内模型试验研究[J]. 工业建筑, 2017, 47(2):94-98.
    [11]
    张礼仁, 张友良, 谭飞, 等. 隧道不同级别围岩监测与数值模拟分析[J]. 隧道建设, 2014, 30:131-134.
    [12]
    NAKAI T, XU L, YAMAZAKI H. 3D and 2D Model Tests and Numerical Analyses of Settlements and Earth Pressures due to Tunnel Excavation[J]. Soils and Foundations, 1997, 37(3):31-42.
    [13]
    邓崴, 潘建平, 曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J]. 科学技术与工程, 2019, 19(18):271-275.
    [14]
    王俊, 何川, 胡瑞青, 等. 土压平衡盾构掘进对上软下硬地层扰动研究[J]. 岩石力学与工程学报, 2017, 36(4):953-963.
    [15]
    FRANZA A, MARSHALL A M, ZHOU B. Greenfield Tunnelling in Sands:The Effects of Soil Density and Relative Depth[J]. Geotechnique, 2019, 69(4):297-307.
    [16]
    ZHOU B, MARSHALL A M, YU H S. The Effect of Relative Density on Settlements Above Tunnels in Sands[J]. Tunnelling and Underground Construction, 2014:96-105.
    [17]
    MARTO A, SOHAEI H, HAJIHASSANI M. Effects of Tunnel Depth and Relative Density of Sand on Surface Settlement Induced by Tunneling[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(3):1045-1052.
    [18]
    TABRIZI M E, FAZEL A A, FARAJI S. An Experimental Study on the Effect of Relative Density on the Settlement Induced by TBM[J]. Journal of Engineering Geology, 2017, 12(1):27-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return