Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 7
Nov.  2021
Turn off MathJax
Article Contents
CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105
Citation: CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105

NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL

doi: 10.13204/j.gyjzG20070105
  • Received Date: 2020-07-01
    Available Online: 2021-11-11
  • The glass fiber reinforced polymer (GFRP) circular members have been extensively applied in power engineering because of its good insulation performance. A finite element model reflecting the anisotropy of GFRP fiber sheets was constructed for GFRP pipes by filament winding at alternate angles of 0°,90°,0°,90° and 0° from inside to outside. The Hashin failure criterion and Matzenmiller-Lapczyk's damage evolution model were used in the numerical simulations for pipes subjected to axial compression. The evolution rules of damage and stress were revealed. The mechanical properties reflected in the simulation were in agreement with that of tests, which indicated that the numerical simulation method was capable of reflecting the mechanical characteristics of the GFRP pipes of the filament winding method.
  • loading
  • [1]
    滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.
    [2]
    叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36.
    [3]
    高湛, 吴必华, 李华. 荆门换流站接地极工程玻璃钢构架真型试验[J]. 电力建设, 2010, 31(12):30-32.
    [4]
    柳欢欢, 刘明慧, 于鑫. 复合材料输电杆塔设计方法讨论[J]. 玻璃钢/复合材料, 2013(6):48-52.
    [5]
    李喜来, 吴庆华, 吴海洋, 等. 复合材料杆塔压杆稳定计算方法研究[J]. 特种结构, 2010, 27(6):1-5

    , 87.
    [6]
    钱鹏, 冯鹏, 叶列平. GFRP管轴心受压性能的试验研究[J]. 天津大学学报, 2007, 40(1):19-23.
    [7]
    侯炜, 张兴虎, 冯海潮. GFRP轴心受压构件的稳定性能[J]. 建筑材料学报, 2010, 13(4):441-445.
    [8]
    PUENTE I, INSAUSTI A, AZKUNE M. Buckling of GFRP Columns:An Empirical Approach to Design[J]. Journal of Composites for Construction, ASCE, 2006, 10(6):529-537.
    [9]
    ZHAN Y, WU G. Determination of Critical Loads for Global Buckling of Axially Loaded Pultruded Fiber-Reinforced Polymer Members with Doubly Symmetric Cross Sections[J]. Advances in Structural Engineering, 2018, 21(12):1911-1922.
    [10]
    ZHAN Y, WU G, HARRIES K A. Determination of Critical Load for Global Flexural Buckling in Concentrically Loaded Pultruded FRP Structural Struts[J]. Engineering Structures, 2018(158):1-12.
    [11]
    符永康. 轴心受力纤维增强复合材料压杆的性能研究[D]. 南京:南京理工大学, 2017.
    [12]
    彭超义, 菊苏, 曾竟成, 等. 缠绕角度对碳/环氧厚壁管件轴压性能影响的实验研究[J]. 宇航材料工艺, 2006, 36(1):38-40.
    [13]
    KADDOUR A S, SODEN P D, HINTON M J. Failure of ±55 Degree Filament Wound Glass/Epoxy Composite Tubes Under Biaxial Compression[J]. Journal of Composite Materials, 1998, 32(18):1618-1645.
    [14]
    BETTS D, SADEGHIAN P, FAM A. Investigation of the Stress-Strain Constitutive Behavior of ±55° Filament Wound GFRP Pipes in Compression and Tension[J]. Composites Part B:Engineering, 2019(172):243-252.
    [15]
    彭超义, 鞠苏, 杜刚, 等. 缠绕角度对碳/环氧厚壁管件轴压性能影响的有限元分析[J]. 宇航材料工艺, 2005, 35(6):27-30.
    [16]
    周磊, 汪楚清, 孙清. 玻璃纤维增强复合材料输电塔节点承载力试验研究及有限元分析[J]. 西安交通大学学报, 2013, 47(9):112-118.
    [17]
    MAIMí P, CAMANHO P P, MAYUGO J A, et al. A Continuum Damage Model for Composite Laminates:Part Ⅱ:Computational Implementation and Validation[J]. Mechanics of Materials, 2007, 39(10):909-919.
    [18]
    LAPCZYK I, HURTADO J A. Progressive Damage Modeling in Fiber-Reinforced Materials[J]. Composites Part A, 2007, 38(11):2333-2341.
    [19]
    CHEN J F, MOROZOV E V, SHANKAR K. A Combined Elastoplastic Damage Model for Progressive Failure Analysis of Composite Materials and Structures[J]. Composite Structures, 2012, 94(12):3478-3489.
    [20]
    COELHO A M G. Finite Element Guidelines for Simulation of Delamination Dominated Failures in Composite Materials Validated by Case Studies[J]. Archives of Computational Methods in Engineering, 2016, 23(2):363-388.
    [21]
    TSAI S W, WU E M. A General Theory of Strength for Anisotropic Materials[J]. Journal of Composite Materials, 1971, 5(1):58-80.
    [22]
    HASHIN Z, ROTEM A. A Fatigue Failure Criterion for Fiber Reinforced Materials[J]. Journal of Composite Materials, 1973, 7(4):448-464.
    [23]
    HASHIN Z. Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, Transactions of the ASME, 1980, 47(2):329-334.
    [24]
    MATZENMILLER A, LUBLINER J, TAYLOR R L. A Constitutive Model for Anisotropic Damage in Fiber-Composites[J]. Mechanics of Materials, 1995, 20(2):125-152.
    [25]
    中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法:GB/T 3354-2014[S]. 北京:中国标准出版社, 2014.
    [26]
    中国国家标准化管理委员会.单向纤维增强塑料平板压缩性能试验方法:GB/T 3856-2005[S]. 北京:中国标准出版社, 2005.
    [27]
    PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and Structural Response of Polymer-Matrix Fibre-Reinforced Composites[J]. Journal of Composite Materials, 2012, 46(19/20):2313-2341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return