Citation: | CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105 |
[1] |
滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.
|
[2] |
叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36.
|
[3] |
高湛, 吴必华, 李华. 荆门换流站接地极工程玻璃钢构架真型试验[J]. 电力建设, 2010, 31(12):30-32.
|
[4] |
柳欢欢, 刘明慧, 于鑫. 复合材料输电杆塔设计方法讨论[J]. 玻璃钢/复合材料, 2013(6):48-52.
|
[5] |
李喜来, 吴庆华, 吴海洋, 等. 复合材料杆塔压杆稳定计算方法研究[J]. 特种结构, 2010, 27(6):1-5
, 87.
|
[6] |
钱鹏, 冯鹏, 叶列平. GFRP管轴心受压性能的试验研究[J]. 天津大学学报, 2007, 40(1):19-23.
|
[7] |
侯炜, 张兴虎, 冯海潮. GFRP轴心受压构件的稳定性能[J]. 建筑材料学报, 2010, 13(4):441-445.
|
[8] |
PUENTE I, INSAUSTI A, AZKUNE M. Buckling of GFRP Columns:An Empirical Approach to Design[J]. Journal of Composites for Construction, ASCE, 2006, 10(6):529-537.
|
[9] |
ZHAN Y, WU G. Determination of Critical Loads for Global Buckling of Axially Loaded Pultruded Fiber-Reinforced Polymer Members with Doubly Symmetric Cross Sections[J]. Advances in Structural Engineering, 2018, 21(12):1911-1922.
|
[10] |
ZHAN Y, WU G, HARRIES K A. Determination of Critical Load for Global Flexural Buckling in Concentrically Loaded Pultruded FRP Structural Struts[J]. Engineering Structures, 2018(158):1-12.
|
[11] |
符永康. 轴心受力纤维增强复合材料压杆的性能研究[D]. 南京:南京理工大学, 2017.
|
[12] |
彭超义, 菊苏, 曾竟成, 等. 缠绕角度对碳/环氧厚壁管件轴压性能影响的实验研究[J]. 宇航材料工艺, 2006, 36(1):38-40.
|
[13] |
KADDOUR A S, SODEN P D, HINTON M J. Failure of ±55 Degree Filament Wound Glass/Epoxy Composite Tubes Under Biaxial Compression[J]. Journal of Composite Materials, 1998, 32(18):1618-1645.
|
[14] |
BETTS D, SADEGHIAN P, FAM A. Investigation of the Stress-Strain Constitutive Behavior of ±55° Filament Wound GFRP Pipes in Compression and Tension[J]. Composites Part B:Engineering, 2019(172):243-252.
|
[15] |
彭超义, 鞠苏, 杜刚, 等. 缠绕角度对碳/环氧厚壁管件轴压性能影响的有限元分析[J]. 宇航材料工艺, 2005, 35(6):27-30.
|
[16] |
周磊, 汪楚清, 孙清. 玻璃纤维增强复合材料输电塔节点承载力试验研究及有限元分析[J]. 西安交通大学学报, 2013, 47(9):112-118.
|
[17] |
MAIMí P, CAMANHO P P, MAYUGO J A, et al. A Continuum Damage Model for Composite Laminates:Part Ⅱ:Computational Implementation and Validation[J]. Mechanics of Materials, 2007, 39(10):909-919.
|
[18] |
LAPCZYK I, HURTADO J A. Progressive Damage Modeling in Fiber-Reinforced Materials[J]. Composites Part A, 2007, 38(11):2333-2341.
|
[19] |
CHEN J F, MOROZOV E V, SHANKAR K. A Combined Elastoplastic Damage Model for Progressive Failure Analysis of Composite Materials and Structures[J]. Composite Structures, 2012, 94(12):3478-3489.
|
[20] |
COELHO A M G. Finite Element Guidelines for Simulation of Delamination Dominated Failures in Composite Materials Validated by Case Studies[J]. Archives of Computational Methods in Engineering, 2016, 23(2):363-388.
|
[21] |
TSAI S W, WU E M. A General Theory of Strength for Anisotropic Materials[J]. Journal of Composite Materials, 1971, 5(1):58-80.
|
[22] |
HASHIN Z, ROTEM A. A Fatigue Failure Criterion for Fiber Reinforced Materials[J]. Journal of Composite Materials, 1973, 7(4):448-464.
|
[23] |
HASHIN Z. Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, Transactions of the ASME, 1980, 47(2):329-334.
|
[24] |
MATZENMILLER A, LUBLINER J, TAYLOR R L. A Constitutive Model for Anisotropic Damage in Fiber-Composites[J]. Mechanics of Materials, 1995, 20(2):125-152.
|
[25] |
中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法:GB/T 3354-2014[S]. 北京:中国标准出版社, 2014.
|
[26] |
中国国家标准化管理委员会.单向纤维增强塑料平板压缩性能试验方法:GB/T 3856-2005[S]. 北京:中国标准出版社, 2005.
|
[27] |
PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and Structural Response of Polymer-Matrix Fibre-Reinforced Composites[J]. Journal of Composite Materials, 2012, 46(19/20):2313-2341.
|