Citation: | SHU Bo, ZHANG Yang, WANG Jiaqian, YANG Jin, DING Ding. RESEARCH PROGRESS AND PROSPECT OF INTEGRATED DESIGN OF PASSIVE SOLAR BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 177-184. doi: 10.13204/j.gyjzG20052805 |
[1] |
LOTFABADI P. Analyzing Passive Solar Strategies in the Case of High-Rise Building[J]. Renewable and Sustainable Energy Reviews, 2015, 52:1340-1353.
|
[2] |
HARKOUSS F, FARDOUN F, BIWOLE P H. Passive Design Optimization of Low Energy Buildings in Different Climates[J]. Energy, 2018, 165:591-613.
|
[3] |
KIRANKUMAR G, SABOOR S, ASHOK BABU T P. Investigation of Different Window and Wall Materials for Solar Passive Building Design[J]. Procedia Technology, 2016, 24:523-530.
|
[4] |
DIAKAKI C, GRIGOROUDIS E, KOLOKOSTA D. Towards a Multi-Objective Optimization Approach for Improving Energy Efficiency in Buildings[J]. Energy & Buildings, 2008, 40(9):1747-1754.
|
[5] |
CHANDEL S S, SARKAR A. Performance Assessment of a Passive Solar Building for Thermal Comfort and Energy Saving in a Hilly Terrain of India[J]. Energy & Buildings, 2015, 86:873-885.
|
[6] |
PETERKIN N. Rewards for Passive Solar Design in the Building Code of Australia[J]. Renewable Energy, 2008, 34(2):440-443.
|
[7] |
路宾, 郑瑞澄, 李忠, 等.太阳能建筑应用技术研究现状及展望[J]. 建筑科学, 2013, 29(10):20-25.
|
[8] |
ALBAYYAA H, HAGARE D, SAHA S. Energy Conservation in Residential Buildings by Incorporating Passive Solar and Energy Efficiency Design Strategies and Higher Thermal Mass[J]. Energy & Buildings, 2018, 182:205-213.
|
[9] |
HASTINGS S R. Myths in Passive Solar Design[J]. Solar Energy, 1995, 55(6):445-451.
|
[10] |
陈洪.被动式太阳能建筑的原理及其在室内设计中的应用[J]. 室内设计, 2000(4):40-44.
|
[11] |
鲁永飞, 夏海山.被动式太阳能建筑一体化设计策略[J]. 建设科技, 2009(24):97-99.
|
[12] |
刘加平.建筑物理[M].北京:中国建筑工业出版社, 2009.
|
[13] |
RABAH K. Development of Energy-Efficient Passive Solar Building Design in Nicosia Cyprus[J]. Renewable Energy, 2005, 30(6):937-956.
|
[14] |
张磊, 鞠晓磊, 曾雁.《被动式太阳能建筑技术规范》解读[J]. 建设科技, 2012(5):50-54, 57.
|
[15] |
王崇杰, 薛一冰.太阳能建筑设计[M].北京:中国建筑工业出版社, 2007.
|
[16] |
GULDENTOPS G, VAN DESSEL S. A Numerical and Experimental Study of a Cellular Passive Solar façade System for Building Thermal Control[J]. Solar Energy, 2017, 149:102-113.
|
[17] |
ULAVI T, HEBRINK T, DAVIDSON J H. Analysis of a Hybrid Solar Window for Building Integration[J]. Energy Procedia, 2014, 57:1941-1950.
|
[18] |
MORRISSEY J, MOORE T, HORNE R E. Affordable Passive Solar Design in a Temperate Climate:An Experiment in Residential Building Orientation[J]. Renewable Energy, 2011, 36(2):568-577.
|
[19] |
MILLER W, BUYS L, BELL J. Performance Evaluation of Eight Contemporary Passive Solar homes in Subtropical Australia[J]. Building and Environment, 2012, 56:57-68.
|
[20] |
SHAVIV E. Design Tools for Bio-Climatic and Passive Solar Buildings[J]. Solar Energy, 1999, 67(4/5/6):189-204.
|
[21] |
KRVGER E, GIVONI B. Thermal Monitoring and Indoor Temperature Predictions in a Passive Solar Building in an Arid Environment[J]. Building and Environment, 2008, 43(11):1792-1804.
|
[22] |
KONIS K, GAMAS A, KENSEK K. Passive Performance and Building form:An Optimization Framework for Early-Stage Design Support[J]. Solar Energy, 2016, 125:161-179.
|
[23] |
FERNÁNDEZ-GONZÁLEZ A. Analysis of the Thermal Performance and Comfort Conditions Produced by Five Different Passive Solar Heating Strategies in the United States Midwest[J]. Solar Energy, 2006, 81(5):581-593.
|
[24] |
XU X, ZHANG Y P, LIN K P, et al. Modeling and Simulation on the Thermal Performance of Shape-Stabilized Phase Change Material Floor Used in Passive Solar Buildings[J]. Energy & Buildings, 2005, 37(10):1084-1091.
|
[25] |
CHEN C, LI Y, LI N, et al. A Computational Model to Determine the Optimal Orientation for Solar Greenhouses Located at Different Latitudes in China[J]. Solar Energy, 2018, 16:19-26.
|
[26] |
ZHU J Y, CHEN B. A Mathematic Model of a Color-changed Passive Solar House[J]. Energy Procedia, 2017, 105:1009-1014.
|
[27] |
LEBIED M, SICK F, CHOULLI Z, et al. Improving the Passive Building Energy Efficiency Through Numerical Simulation:A Case Study for Tetouan Climate in Northern of Morocco[J]. Case Studies in Thermal Engineering, 2018, 11:125-134.
|
[28] |
FILIPPIÍN C, BEASCOCHEA A, ESTEVES A, et al. A Passive Solar Building for Ecological Research in Argentina:The First Two Years Experience[J]. Solar Energy, 1998, 63(2):105-115.
|
[29] |
TONG G H, CHRISTOPHER D M, LI T, et al. Passive Solar Energy Utilization:A Review of Cross-Section Building Parameter Selection for Chinese Solar Greenhouses[J]. Renewable and Sustainable Energy Reviews, 2013, 26:540-548.
|
[30] |
ZHOU G B, ZHANG Y P, WANG X, et al. An Assessment of Mixed Type PCM-Gypsum and Shape-Stabilized PCM Plates in a Building for Passive Solar Heating[J]. Solar Energy, 2007, 81(11):1351-1360.
|
[31] |
CHANDEL S S, AGGARWAL R K. Performance Evaluation of a Passive Solar Building in Western Himalayas[J]. Renewable Energy, 2008, 33(10):2166-2173.
|
[32] |
LAU C C S, LAM J C, LIU Y. Climate Classification and Passive Solar Design Implications in China[J]. Energy Conversion and Management, 2007, 48(7):2006-2015.
|
[33] |
RAMAN P, MANDE S, KISHORE V V N. A Passive Solar System for Thermal Comfort Conditioning of Buildings in Composite Climates[J]. Solar Energy, 2001, 70(4):319-329.
|
[34] |
YOUSEF M S, HASSAN H, AHMED M, et al. Energy and Exergy Analysis of Single Slope Passive Solar Still Under Egyptian Climate Conditions[J]. Energy Procedia, 2017, 141:18-23.
|
[35] |
ZAIN-AHMED A, SOPIAN K, OTHMAN MYH, et al. Daylighting as a Passive Solar Design Strategy in Tropical Buildings:A Case Study of Malaysia[J]. Energy Conversion and Management, 2002, 43(13):1725-1736.
|
[36] |
JAFARI A, POSHTIRI A H. Passive Solar Cooling of Single-Storey Buildings by an Adsorption Chiller System Combined with a Solar Chimney[J]. Journal of Cleaner Production, 2017, 141:662-682.
|
[37] |
PRIYA R S, SUNDARRAJA M C, RADHAKRISHNAN S, et al. Solar Passive Techniques in the Vernacular Buildings of Coastal Regions in Nagapattinam, TamilNadu-India:A Qualitative and Quantitative Analysis[J]. Energy & Buildings, 2012, 49:50-61.
|
[38] |
ZHU J Y, CHEN B. Experimental Study on Thermal Response of Passive Solar House with Color Changed[J]. Renewable Energy, 2015, 73:55-61.
|
[39] |
CHEN B, ZHUANG Z, CHEN X, et al. Field Survey on Indoor Thermal Environment of Rural Residences with Coupled Chinese Kang and Passive Solar Collecting Wall Heating in Northeast China[J]. Solar Energy, 2006, 81(6):781-790.
|
[40] |
ATHIENITIS A K, AKHNIOTIS E. Methodology for Computer-aided Design and Analysis of Passive Solar Buildings[J]. Computer-Aided Design, 1993, 25(4):203-214.
|
[41] |
HERAS M R, JIMÉNEZ M J, SAN ISIDRO M J, et al. Energetic Analysis of a Passive Solar Design, Incorporated in a Courtyard After Refurbishment, Using an Innovative Cover Component Based in a Sawtooth Roof Concept[J]. Solar Energy, 2004, 78(1):85-96.
|
[42] |
TOMBAZIS A N, PREUSS S A. Design of Passive Solar Buildings in Urban Areas[J]. Solar Energy, 2001, 70(3):311-318.
|
[43] |
VASSILIADES C, MICHAEL A, SAVVIDES A, et al. Improvement of Passive Behaviour of Existing Buildings Through the Integration of Active Solar Energy Systems[J]. Energy, 2018, 163:1178-1192.
|
[44] |
MOLS T, DZENE K P, VANAGA R, et al. Experimental Study of Small-Scale Passive Solar Wall Module with Phase Change Material and Fresnel Lens[J]. Energy Procedia, 2018, 147:467-473.
|
[45] |
STEVANOVI S. Optimization of Passive Solar Design Strategies:A Review[J]. Renewable and Sustainable Energy Reviews, 2013, 25:177-196.
|
[46] |
KIMURA K. Solar Architecture for the Happiness of Mankind[J]. Solar Energy, 1999, 67(4):169-179.
|
[47] |
MAURER C, CAPPEL C, KUHN T E. Progress in Building-Integrated Solar Thermal Systems[J]. Solar Energy, 2015, 103:118-123.
|
[48] |
GARDE F, MARA T, LAURET A P, et al. Bringing Simulation to Implementation:Presentation of a Global Approach in the Design of Passive Solar Buildings Under Humid Tropical Climates[J]. Solar Energy, 2001, 71(2):109-120.
|
[49] |
KUMMERT M, ANDRÉ P, NICOLAS J. Optimal Heating Control in a Passive Solar Commercial Building[J]. Solar Energy, 2001, 69:103.
|
[50] |
STRØMANN-ANDERSEN J, SATTRUP P A. The Urban Canyon and Building Energy Use:Urban Density Versus Daylight and Passive Solar Gains[J]. Energy & Buildings, 2011, 43(8):2011-2020.
|
[51] |
HUGHES B R, OATES M. Performance Investigation of a Passive Solar-Assisted Kiln in the United Kingdom[J]. Solar Energy, 2011, 85(7):1488-1498.
|
[52] |
DARKWA K, O'CALLAGHAN P W, TETLOW D. Phase-Change Drywalls in a Passive-Solar Building[J]. Applied Energy, 2006, 83(5):425-435.
|
[53] |
SAVVIDES A, VASSILIADES C, MICHAEL A, et al. Siting and Building-Massing Considerations for the Urban Integration of Active Solar Energy Systems[J]. Renewable Energy, 2019, 135:963-974.
|
[54] |
HENG C K, CHOO M L L, ZHANG J. Relationship Between Density, Urban Form and Environmental Performance[G]//Growing Compact:Urban Form, Density and Sustainability. London:Routledge, 2017.
|
[55] |
ZHANG J, LE X, SHABUNKO V, et al. Impact of Urban Block Typology on Building Solar Potential and Energy Use Efficiency in Tropical High-Density City[J]. Applied Energy, 2019, 240:513-533.
|
[56] |
AMADO M, POGGI F. Solar Energy Integration in Urban Planning:GUUD Model[J]. Energy Procedia, 2014, 50:277-284.
|
[57] |
孙丹. 新型被动式太阳能相变集热蓄热墙系统研究[D]. 大连:大连理工大学, 2016.
|
[58] |
DUFFIE J A, BECKMAN W A. Solar Engineering of Thermal Processes Second Edition[J]. American Journal of Physics, 1980, 81(4):16591.
|
[59] |
王垚. 太阳能技术在建筑上的应用研究[D]. 西安:西安科技大学, 2010.
|
[60] |
CHEN C, GUO H F, LIU Y N, et al. A New Kind of Phase Change Material (PCM) for Energy-Storing Wallboard[J]. Energy & Buildings, 2007, 40(5):882-890.
|
[61] |
KOSNY J, FALLAHI A, SHUKLA N, et al. Thermal Load Mitigation and Passive Cooling in Residential Attics Containing PCM-Enhanced Insulations[J]. Solar Energy, 2014, 108:164-177.
|
[62] |
JUANICÓ L E. A New Design of Configurable Solar Awning for Managing Cooling and Heating Loads[J]. Energy & Buildings, 2009, 41(12):1381-1385.
|
[63] |
TRONCHIN L, MANFREN M, JAMES P A B. Linking Design and Operation Performance Analysis Through Model Calibration:Parametric Assessment on a Passive House Building[J]. Energy, 2018, 165:26-40.
|
[64] |
GOU S Q, NIK V M, SCARTEZZINI J L, et al. Passive Design Optimization of Newly-Built Residential Buildings in Shanghai for Improving Indoor Thermal Comfort While Reducing Building Energy Demand[J]. Energy & Buildings, 2018, 169:484-506.
|
[65] |
钟珂, 杨柳, 汪妇欢, 等.被动式太阳能建筑室内热环境评价指标的分析[J]. 西安建筑科技大学学报(自然科学版), 2003(1):14-16.
|
[66] |
ZIRNHELT H E, RICHMAN R C. The Potential Energy Savings from Residential Passive Solar Design in Canada[J]. Energy & Buildings, 2015, 103:224-237.
|
[67] |
NGUYEN A T, REITER S, RIGO P. A Review on Simulation-Based Optimization Methods Applied to Building Performance Analysis[J]. Applied Energy, 2014, 113(1):1043-1058.
|
[68] |
TIAN Z C, ZHANG X K, JIN X, et al. Towards Adoption of Building Energy Simulation and Optimization for Passive Building Design:A Survey and a Review[J]. Energy & Buildings, 2018, 158:1306-1316.
|
[69] |
YI Y K, MALKAWI A M. Optimizing Building form for Energy Performance Based on Hierarchical Geometry Relation[J]. Automation in Construction, 2009, 18(6):825-833.
|
[70] |
TUHUS-DUBROW D, KRARTI M. Genetic-Algorithm Based Approach to Optimize Building Envelope Design for Residential Buildings[J]. Building and Environment, 2010, 45(7):1574-1581.
|
[71] |
SHI X, YANG W J. Performance-Driven Architectural Design and Optimization Technique from a Perspective of Architects[J]. Automation in Construction, 2013, 32:125-135.
|