Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
GUO Qiusheng. CAPILLARY WATER ABSORPTION CHARACTERISTICS OF CONCRETE AND ITS RELATIONSHIP WITH PORE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 119-123. doi: 10.13204/j.gyjz202003020
Citation: LUO Peiyun, LEI Yongwang, ZHU Binrong, ZHAO Weiping. EXPERIMENTAL RESEARCH ON INTERFACE BOND PERFORMANCES BETWEEN LSAW STEEL PIPES AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 77-84. doi: 10.13204/j.gyjzG20052008

EXPERIMENTAL RESEARCH ON INTERFACE BOND PERFORMANCES BETWEEN LSAW STEEL PIPES AND CONCRETE

doi: 10.13204/j.gyjzG20052008
  • Received Date: 2020-05-20
    Available Online: 2021-07-17
  • In structure design of concrete-filled steel tube (CFST) structure of long-span transmission towers, the higher requirements were put forward for the interface bond performance. To study the interface bond performances between LSAW(longitudinally Submerged Arc Welding) steel pipes and concrete, push-out tests based on orthogonal test principles were conducted on nine CFST specimens. The bond mechanisms and distribution laws of bond stress between LSAW steel pipes and concrete were studied. The main and secondary relations and influencing laws of parameters on the bond strength were analyzed. The optimized empirical formulas of bond strength were proposed based on the analysis of orthogonal tests. Test results indicated that curves of bond stress and slip consisted of the adhesive stage, nonlinear initial sliding stage and sliding stage. All curves had a similar rising tendency at the adhesive stage and nonlinear initial sliding stage. And there were three kinds of tendencies at sliding stage, namely, type I-1, Ⅰ-2 and Ⅱ. The type I-1 curve firstly decreased and then kept it stable. The type Ⅰ-2 curve firstly decreased and then possessed a secondary rising branch. The type II curve continued to ascend slowly at the sliding stage. Three kinds of curve tendencies were mainly caused by macro-manufacturing deviations of the LSAW steel pipes. The factors that influenced adhesive strength and ultimate bond strength both were in order of diameter-thickness ratio of steel pipes, concrete strength and interface bond length in terms of importance. The adhesive strength and ultimate bond strength bothdecreased significantly with the increase of diameter-thickness ratios of steel pipes, but increased with the increase of concrete strength. The bond stress at two ends of specimens decreased with the increase of loads, which revealed the failure mechanism that interface peeled off from the both ends to the middle part. A comparison with other literatures verified that the optimized calculation formulas of bond strength had reliability.
  • 韩林海. 钢管混凝土结构[M]. 北京:科学出版社, 2016.
    朱瑞元, 李喜来, 廖宗高, 等. 大跨越钢管混凝土输电塔抗震性能分析[J]. 电力勘测设计, 2018(增刊2):136-144.
    朱天浩, 徐建国, 叶尹, 等. 输电线路特大跨越设计中的关键技术[J]. 电力建设, 2010, 31(4):25-31.
    CHEN Y, FENG R, SHAO Y B, et al. Bond-Slip Behaviour of Concrete-Filled Stainless Steel Circular Hollow Section Tubes[J]. Journal of Constructional Steel Research, 2017, 130:248-263.
    许开成, 黄财林, 陈梦成. 钢管内壁粗糙程度对钢管混凝土界面黏结性能的影响研究[J]. 建筑结构学报, 2013, 34(增刊1):420-424.
    TAO Z, SONG T Y, BRIAN U, et al. Bond Behaviour in Concrete-Filled Steel Tubes[J]. Journal of Constructional Steel Research, 2016, 120:81-93.
    黄文金, 盛叶, 张正宾, 等. 钢管-钢纤维活性粉末混凝土界面黏结强度试验研究[J]. 建筑结构学报, 2017, 38(增刊1):502-507,514.
    VIRDI K S, DOWLING P J. Bond Structure in Concrete Filled Steel Tubes[C]//IABSE. IABSE Proceeding. Zurich:IABSE,1980:125-139.
    SHAKIR-KHALIL H. Push-Out Strength of Concrete-Filled Steel Hollow Sections[J]. Structure Engineer, 1993, 71(13):230-243.
    ROEDER C W, CAMERON B, BROWN C B. Composite Action in Concrete Filled Tubes[J]. The Structural Engineer,1999, 125(5):477-484.
    薛立红, 蔡绍怀. 钢管混凝土柱组合界面的黏结强度(上)[J]. 建筑科学, 1996(3):22-28.
    薛立红, 蔡绍怀. 钢管混凝土抗剪连接件的试验研究[J]. 建筑科学, 1998(1):13-21.
    陈宗平, 徐金俊, 薛建阳, 等. 钢管再生混凝土黏结滑移推出试验及黏结强度计算[J]. 土木工程学报, 2013, 46(3):49-58.
    马吉昌, 荆松龙, 李云龙. 非生产因素对埋弧焊管椭圆度的影响[J]. 焊管, 2012, 35(7):48-52.
    中国电力企业联合会. 输电线路钢管塔用直缝焊管:T/CEC 136-2017[S]. 北京:中国电力出版社, 2017.
    TAO Z, HAN L H, BRIAN U, et al. Post-Fire Bond Between the Steel Tube and Concrete in Concrete-Filled Steel Tubular Columns[J]. Journal of Constructional Steel Research, 2011, 67(3):484-496.
    薛立红, 蔡绍怀. 钢管混凝土柱组合界面的黏结强度(下)[J]. 建筑科学, 1996, 12(4):19-23.
    康希良. 钢管混凝土组合力学性能及黏结滑移性能研究[D]. 西安:西安建筑科技大学, 2008.
    孙威, 付腾燕, 居理宏, 等. 阵列型金属阻尼器钢棒耗能元件设计与性能研究[J]. 建筑科学与工程学报, 2018, 35(5):225-232.
    许开成, 毕丽苹, 陈梦成. 钢管混凝土界面黏结应力-滑移本构关系试验研究[J]. 建筑结构学报, 2015, 36(增刊1):407-412.
    刘永健,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J]. 工业建筑, 2006,36(4):78-80.
    刘永健, 刘君平, 池建军. 钢管混凝土界面抗剪粘结滑移力学性能试验[J]. 广西大学学报(自然科学版), 2010, 35(1):17-23,29.
  • Relative Articles

    [1]LIU Jianhua, WANG Zhenshan, XIONG Ergang, XU Han. Bond-Slip Push-Out Performance and Finite Element Analysis of Double-Fold Steel Plate Shear Connector[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 166-176. doi: 10.3724/j.gyjzG22121304
    [2]XUE Weichen, ZHANG Baozheng, CHEN Shengyang, JIANG Jiafei, GUO Dapeng. State of the Art on Mechanical Properties of Precast Prestressed Concrete Structures (for Buildings and Utility Tunnels)[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 9-20. doi: 10.3724/j.gyjzG24100801
    [3]ZHENG Baofeng, SHU Yinjia, SHU Ganping, LI Lei. Tests and Design on the Bending Capacity of Flexural Acrylic Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 156-162. doi: 10.3724/j.gyjzG22011706
    [4]DU Wei, WANG Wenfu, FANG Minjie, ZHOU Hua, WEI Hua, WANG Qinghe. Design Methods for Static Performance of Steel-Bars Truss Slabs Considering Effects of Profiled Steel Sheets[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 153-160. doi: 10.13204/j.gyjzG22110911
    [5]MENG Jiao, ZHOU Zhongyu, NIE Xin, ZHUANG Liangdong. Design and Mechanical Property Analysis of Prefabricated Steel-Concrete Composite Structure for Electronic Chip Plants[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 62-68. doi: 10.13204/j.gyjzG23081701
    [6]FENG Jiangquan, HUANG Leiqun, HUANG Zhenhua, ZHANG Wei. DESIGN AND CONSTRUCTION OF PREFABRICATED SPINNING STEEL PIPE PILES WITH ENLARGED ENDS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 158-164. doi: 10.13204/j.gyjzS20052504
    [7]LAN Tao, QIN Guangchong, FU Yanqing, MEN Jinjie, HE Hao. EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTIES OF DOUBLE-LAYER SHOULDER BEAMS WITH TRIPLE-LIMB SIDE COLUMNS OF CONCRETE-FILLED STEEL TUBES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 24-32. doi: 10.13204/j.gyjzG20082311
    [8]MEN Jinjie, ZHANG Boya, LAN Tao, QIN Guangchong, HE Hao. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF DOUBLE-LAYER SHOULDER BEAMS WITH DOUBLE-LIMB SIDE COLUMNS OF CONCRETE-FILLED STEEL TUBES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 1-8,137. doi: 10.13204/j.gyjzG20082306
    [9]CAI, Xiaoning, MENG, Shaoping. RESEARCH ON FORM AND DESIGN METHOD OF THE PRESTRESSED SELF-CENTERING CONCRETE FRAME JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 7-11,6. doi: 10.13204/j.gyjz202001002
    [10]Jiang Ke-bin, Ding Yong, Gao Hai-yun, Wang Wei-xing, Zhou Yin-zhi. COMPARATIVE STUDY ON FALSEWORK SCHEME OF STEEL WEBS FOR PC COMPOSITE BOX-GIRDER WITH CORRUGATED STEEL WEBS DURING CANTILEVER CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 120-124. doi: 10.13204/j.gyjz201209026
    [11]Bu Fanmin, Zou Hong, Shen Shungao, Nie Jianguo, Wen Lingyan. DESIGN AND CONSTRUCTION TECHNOLOGY OF TWO-WAY STEEL-CONCRETE COMPOSITE FLOOR SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 100-104. doi: 10.13204/j.gyjz201109022
    [12]Wang Zhijun, Bai Jie, Bai Shaoliang. LOAD TRANSFER MODEL AND DESIGN METHOD OF ECCENTRIC IN-PLANE BEAM-THIN WALL JOINT[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 60-65. doi: 10.13204/j.gyjz201003015
    [13]Gong Anli, Zheng Shansuo, Wang Bin, Zha Chunguang, Li Lei. A DESIGN METHOD TO STRENGTHEN PRESTRESSED CONCRETE CRANE GIRDER USING CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 102-105. doi: 10.13204/j.gyjz200808027
    [14]Nie Rusong, Leng Wuming, Deng Zongwei, Zhao Jian. 3D FINITE ELEMENT RESEARCH ON SOIL ARCHING EFFECT BETWEEN THE PASSIVE SQUARE PILES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 47-52. doi: 10.13204/j.gyjz200707015
    [15]Guo Yanlin, Deng Ke, Lin Bing. STABILITY BEHAVIOR AND DESIGN OF LONGITUDINAL SHUTTLE-SHAPED COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 92-95. doi: 10.13204/j.gyjz200707027
    [16]Chong Xun, Meng Shao-ping, Pan Qi-jian, Zhang Lin-zhen. STUDY ON FORM AND DESIGN APPROACH OF PRECAST PRESTRESSED CONCRETE FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 5-7. doi: 10.13204/j.gyjz200605002
    [17]Zai Jinmin, Wang Xudong, Yu Chuang. RESEARCH ON THE SOIL ADDITIONAL STRESS AND SIMPLIFIED SETTLEMENT CALCULATION OF COMPOSITE PILE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 24-27. doi: 10.13204/j.gyjz200505006
    [18]Zong Lan, Sui Chengquan. THE DYNAMIC ANALYSIS OF FINITE ELEMENT OF FRICTION-DAMPED SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 17-20. doi: 10.13204/j.gyjz200506005
    [19]Yu Ning, Zhu Hehua. RESEARCH ON DESIGN AND COMPUTATION METHOD OF SHIELD TUNNEL LININGS IN COMPLEX STRATIGRAPHIC CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 57-60,72. doi: 10.13204/j.gyjz200404017
    [20]Ye Qinghua. APPLICATION OF STEEL-CONCRETE COMPOSITE BEAM TO EQUIPMENT FOUNDATION AND ITS DESIGN METHOD[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 62-64,23. doi: 10.13204/j.gyjz200405019
  • Cited by

    Periodical cited type(6)

    1. 田威,郭健,王文奎,张景生,王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究. 材料导报. 2025(03): 85-91 .
    2. 蒋建华,卢宸宸,师效哲,陈林林,周家冰. 纳米SiO_2改性粉煤灰混凝土力学性能及吸水特性研究. 建筑科学与工程学报. 2024(03): 10-17 .
    3. 肖前慧,师姗姗,邱继生,李蕾蕾,武哲. 冻融环境下再生混凝土毛细吸水特性研究. 冰川冻土. 2024(03): 909-918 .
    4. 师现营,师苏傲特,李松. 掺淤砂混凝土力学行为与微观孔结构特征研究. 人民黄河. 2022(06): 139-143 .
    5. 董伟,付前旺,刘鑫,薛慧君,肖阳. 毛细作用下风积沙混凝土水分和氯离子传输特性试验. 沈阳建筑大学学报(自然科学版). 2021(04): 716-723 .
    6. 梁晓前,黄榜彪,黄秉章,杨雷铭,孙文贤,林通敏,任志强,李有的,刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究. 材料导报. 2021(S2): 200-204 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 84.2 %META: 84.2 %PDF: 4.6 %PDF: 4.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.9 %其他: 9.9 %China: 8.6 %China: 8.6 %临汾: 0.7 %临汾: 0.7 %北京: 1.3 %北京: 1.3 %南京: 0.7 %南京: 0.7 %南宁: 2.6 %南宁: 2.6 %南通: 1.3 %南通: 1.3 %厦门: 0.7 %厦门: 0.7 %合肥: 3.9 %合肥: 3.9 %天津: 0.7 %天津: 0.7 %太原: 0.7 %太原: 0.7 %常德: 1.3 %常德: 1.3 %广州: 1.3 %广州: 1.3 %廊坊: 0.7 %廊坊: 0.7 %张家口: 3.9 %张家口: 3.9 %成都: 0.7 %成都: 0.7 %昆明: 1.3 %昆明: 1.3 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.3 %杭州: 1.3 %梧州: 0.7 %梧州: 0.7 %武威: 0.7 %武威: 0.7 %武汉: 4.6 %武汉: 4.6 %池州: 0.7 %池州: 0.7 %沈阳: 0.7 %沈阳: 0.7 %济南: 0.7 %济南: 0.7 %温州: 0.7 %温州: 0.7 %珠海: 0.7 %珠海: 0.7 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %西宁: 13.2 %西宁: 13.2 %西安: 2.6 %西安: 2.6 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 1.3 %贵阳: 1.3 %运城: 6.6 %运城: 6.6 %邯郸: 1.3 %邯郸: 1.3 %郑州: 2.6 %郑州: 2.6 %长沙: 0.7 %长沙: 0.7 %长治: 0.7 %长治: 0.7 %阳泉: 0.7 %阳泉: 0.7 %阿什本: 0.7 %阿什本: 0.7 %其他China临汾北京南京南宁南通厦门合肥天津太原常德广州廊坊张家口成都昆明晋城朝阳杭州梧州武威武汉池州沈阳济南温州珠海芒廷维尤西宁西安诺沃克贵阳运城邯郸郑州长沙长治阳泉阿什本

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(1) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return