Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 9
Jan.  2022
Turn off MathJax
Article Contents
MA Sen, ZHAO Qilin. RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 202-206,229. doi: 10.13204/j.gyjzG20051212
Citation: MA Sen, ZHAO Qilin. RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 202-206,229. doi: 10.13204/j.gyjzG20051212

RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS

doi: 10.13204/j.gyjzG20051212
  • Received Date: 2020-05-12
    Available Online: 2022-01-11
  • Based on the idea of the equivalent parameters method and energy method, the theoretical formula of composite variable cross-section struts was deduced. Firstly, the wall of the composite compression strut was equivalent to an orthotropic shell whose main axis direction was consistent with the axial direction of the strut based on the idea of the equivalent parameters method, then, the composite strut could be approximated as an orthotropic strut. Thirdly, aiming at the orthotropic compression strut, the buckling deflection equation of compression structs was assumed, and the formula for the theoretical stability load was deduced based on the energy method. Finally, the accuracy of the formula was verified and discussed by comparison with ones by the finite element method, the results showed that:the theory formula in could accurately predict the critical load of the composite variable cross-section compression strut.
  • loading
  • [1]
    刘士明. 工程起重机伸缩臂系统结构稳定性及复合运动动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [2]
    张云龙. 基于变截面支撑的半刚性钢框架抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [3]
    JEGLEY D C, WU K C, PHELPS J E, et al. Structural Efficiency of Composite Struts for Aerospace Applications[J]. Journal of Spacecraft and Rockets, 2012, 49(5):915-924.
    [4]
    杨瑞芳, 刘海智, 韩宝生. 浅谈压杆稳定理论在工程上的应用[J]. 内蒙古农业大学学报(自然科学版), 2012, 33(1):143-147.
    [5]
    戴保东, 郑荣, 吉子轩. 变截面压杆稳定计算的有限元法[J]. 山西机械, 2000(3):16-8.
    [6]
    卞敬玲, 王小岗. 变截面压杆稳定计算的有限单元法[J]. 武汉大学学报(工学版), 2002,35(4):102-104.
    [7]
    谢扬波, 龙小艳. 有限元分析变截面压杆的稳定问题[J]. 黑龙江科技信息, 2012(23):284.
    [8]
    楼梦麟, 李建元. 变截面压杆稳定问题半解析解[J]. 同济大学学报(自然科学版), 2004, 32(7):857-860.
    [9]
    杨立军, 邓志恒, 吴晓, 等. 变截面压杆弹性稳定的解析解[J]. 河南理工大学学报(自然科学版), 2013(1):85-88.
    [10]
    ZHANG D, ZHAO Q, LI F, et al. Torsional Behavior of a Hybrid FRP-Aluminum Space Truss Bridge:Experimental and Numerical Study[J]. Engineering Structures, 2018(157):132-143.
    [11]
    JEGLEY D C, WU K C, PHELPS J E, et al. Evaluation of Long Composite Struts[J]. NASA/TM, 2011(217049):1-17.
    [12]
    VINSON J R, SIERAKOWSKI R L. The Behavior of Structures Composed of Composite Materials[M]. Dordrecht:Kluwer Academic Publishers, 2006.
    [13]
    WU K C, JEGLEY D C, BARNARD A, et al. Highly Loaded Composite Strut Test Results[C]//SEICO 11, SAMPE Europe 32nd International Conference and Forum. 2011.
    [14]
    DEO R, BENNER H, VINCENT D, et al. Design of Structurally Efficient Tapered Struts (SETS)[J]. NASA/CR, 2010(216699):1-21.
    [15]
    刘鸿文. 材料力学:下册[M]. 北京:高等教育出版社,2004.
    [16]
    胡更开. 复合材料力学[M]. 北京:清华大学出版社, 2006.
    [17]
    刘文庆, 姜秉元. 对称复合材料层板弹性模量和泊松比的计算[J]. 宇航材料工艺, 2003(3):53-56.
    [18]
    张晓霞, 周柏卓. 正交各向异性材料弹性本构关系分析[J]. 航空发动机, 1997(1):20-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return