Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yuxia, LU Jingzhou, TIAN Feixiang, LI Yunkai, LI Haibo. RESEARCH ON THE DAMAGE OF GEOPOLYMER CONCRETE UNDER THE ACTION OF SALTWATER AND FREEZE-THAW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 76-81. doi: 10.13204/j.gyjz202004014
Citation: HAN Yudong, DING Xiaoping, HAO Tingyu, GUO Dong, HOU Dongwei. CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 186-192,120. doi: 10.13204/j.gyjzG20042507

CURRENT STATUS OF RESEARCH ON DURABILITY OF SEAWATER-CORAL AGGREGATE CONCRETE

doi: 10.13204/j.gyjzG20042507
  • Received Date: 2020-06-13
    Available Online: 2021-06-04
  • Seawater-coral aggregate concrete has become a new type of building material for constructions in islands and reefs,supporting the development of ocean exploration in China. Based on the stage divisions of whole life cycle of seawater-coral aggregate concrete structures,the influences of salinity in seawater on early-age hydration of cement were summarized. A concept of two-level transmission routes through coral aggregate and cement matrix respectively was proposed. The main mechanism of mineral corrosion and the damage and destruction process under mitigation were reviewed. Main gaps and suggested key issues were expected to be valuable for future researches on the durability problem of seawater-coral aggregate concrete.
  • WANG A, LYU B, ZHANG Z, et al. The Development of Coral Concretes and Their Upgrading Technologies:A Critical Review[J]. Construction and Building Materials, 2018, 187:1004-1019.
    USACE, NAVFAC, AFCESA. Unified Facilities Criteria(UFC), Design:Tropical Engineering:UFC 3-440-05N[S]. U.S:Army Corps of Engineers, 2004.
    HOWDYSHELL P A. The Use of Coral as an Aggregate for Portland Cement Concrete Structures[R]. Champaign IL:Construction Engineering Research Lab (Army), 1974.
    EHLERT R A. Coral Concrete at Bikini Atoll[J]. Concrete International, 1991, 13(1):19-24.
    ARUMUGAM R A, RAMAMURTHY K. Study of Compressive Strength Characteristics of Coral Aggregate Concrete[J]. Magazine of Concrete Research, 1996, 48(176):141-148.
    WATTANACHAI P, OTSUKI N, SAITO T, et al. A Study on Chloride Ion Diffusivity of Porous Aggregate Concretes and Improvement Method[J]. Doboku Gakkai Ronbunshuu E, 2009, 65(1):30-44.
    TEHADA T,FUNAHASHI M. Cathodic Protection of Building Reinforcing Steel[C]//NACE International. Florida:USA, Orlando, 2005:14-18.
    陈兆林, 陈天月, 曲勣明. 珊瑚礁砂混凝土的应用可行性研究[J]. 海洋工程, 1991, 9(3):67-80.
    卢博,梁元博. 海水珊瑚砂混凝土的实验研究Ⅰ[J].海洋通报,1993(5):69-74.
    梁元博, 卢博, 黄韶健. 热带海洋环境与海工混凝土[J]. 海洋技术, 1995, 14(2):58-66.
    YU H F, DA B, MA H, et al. Durability of Concrete Structures in Tropical Atoll Environment[J]. Ocean Engineering, 2017, 135:1-10.
    DA B, YU H F, MA H, et al. Chloride Diffusion Study of Coral Concrete in a Marine Environment[J]. Construction and Building Materials, 2016, 123:47-58.
    JUENGER M C G, MONTEIRO P J M, GARTNER E M, et al. A Soft X-Ray Microscope Investigation into the Effects of Calcium Chloride on Tricalcium Silicate Hydration[J]. Cement and Concrete Research, 2005, 35(1):19-25.
    HILL J, SHARP J H. The Hydration Products of Portland Cement in the Presence of Tin (II) Chloride[J]. Cement and Concrete Research, 2003, 33(1):121-124.
    UBBRIACO P, CALABRESE D. Hydration Behaviour of Mixtures of Cement and Fly Ash with High Sulphate and Chloride Content[J]. Journal of Thermal Analysis and Calorimetry, 2000, 61(2):615-623.
    THOMAS J J, ALLEN A J, JENNINGS H M. Hydration Kinetics and Microstructure Development of Normal and CaCl2-Accelerated Tricalcium Silicate Pastes[J]. The Journal of Physical Chemistry C, 2009, 113(46):19836-19844.
    SHANAHAN N, SEDAGHAT A, ZAYED A. Effect of Cement Mineralogy on the Effectiveness of Chloride-Based Accelerator[J]. Cement and Concrete Composites, 2016, 73:226-234.
    郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究:合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2018, 31(23):132-137.
    臧文洁, 郭丽萍, 曹园章, 等. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8):1317-1321.
    XU J, SONG Y, JIANG L, et al. Influence of Elevated Temperature on Release of Bound Chlorides from Chloride-Admixed Plain and Blended Cement Pastes[J]. Construction and Building Materials, 2016, 104:9-15.
    赵艳林, 韩超, 张栓柱, 等. 海水拌养珊瑚混凝土抗压龄期强度试验研究[J]. 混凝土, 2011(2):43-45.
    张栓柱. 珊瑚混凝土的疲劳特性及微观机理研究[D]. 南宁:广西大学, 2012.
    达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素[J]. 硅酸盐学报, 2016, 44(2):253-260.
    CHENG S, SHUI Z, SUN T, et al. Durability and Microstructure of Coral Sand Concrete Incorporating Supplementary Cementitious Materials[J]. Construction and Building Materials, 2018, 171:44-53.
    刘加平, 刘玉静, 石亮, 等. 氯盐-硫酸盐对水泥基材料的复合侵蚀破坏[J]. 建筑材料学报, 2016, 19(6):993-997.
    王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2):187-198.
    潘从玲, 储洪强, 蒋林华, 等. 氯盐-硫酸盐共存环境中阳离子类型对氯离子结合能力的影响[J]. 混凝土, 2019(4):28-32.
    UBBRÌACO P, CALABRESE D. Solidification and Stabilization of Cement Paste Containing Fly Ash from Municipal Solid Waste[J]. Thermochimica acta, 1998, 321(1-2):143-150.
    BEAUDOIN J J, RAMACHANDRAN V S, FELDMAN R F. Interaction of Chloride and CSH[J]. Cement and Concrete Research, 1990, 20(6):875-883.
    杨建森. 混凝土中钙矾石作用的二重性[J]. 建筑材料学报, 2001(4):362-366.
    GENG J, EASTERBROOK D, LI L, et al. The Stability of Bound Chlorides in Cement Paste with Sulfate Attack[J]. Cement and Concrete Research, 2015, 68:211-222.
    MAES M, MITTERMAYR F, DE BELIE N. The Influence of Sodium and Magnesium Sulphate on the Penetration of Chlorides in Mortar[J]. Materials and Structures, 2017, 50(2):153.
    WANG Y, SHUI Z, YU R, et al. Chloride Ingress and Binding of Coral Waste Filler-Coral Waste Sand Marine Mortar Incorporating Metakaolin[J]. Construction and Building Materials, 2018, 190:1069-1080.
    HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride Binding of Cement Estimated by Binding Isotherms of Hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1):77-84.
    STROH J, MENG B, EMMERLING F. Deterioration of Hardened Cement Paste Under Combined Sulphate-Chloride Attack Investigated by Synchrotron XRD[J]. Solid State Sciences, 2016, 56:29-44.
    席耀忠. 近年来水泥化学的新进展:记第九届国际水泥化学会议[J]. 硅酸盐学报, 1993, 21(6):577-588.
    刘赞群, 候乐, 邓德华, 等. 硫铝酸盐水泥净浆半浸泡在碳酸钠溶液中的破坏机理[J]. 硅酸盐学报, 2017, 45(5):639-643.
  • Relative Articles

    [1]JIANG Yi, WANG Gang, REN Xiaoguang, YANG Jingming, HU Junjie. Case Study of Karst Foundation Treatment for a Foundation Pit Project in Shenzhen[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 204-207. doi: 10.13204/j.gyjzg21043008
    [2]JIANG Qinquan, GU Renguo, DENG Lei, FANG Yingguang. Experiment and Analysis of Filling Degrees in Foundation of Immersed Tube Tunnels Treated by the Sand Flow Method[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 24-28. doi: 10.13204/j.gyjzG21062306
    [3]GUO Zhong, SONG Erxiang, LIN Shijie, LIU Guanglei, XU Yuqi, FU Hao, TONG Ximing, JIAO Gongqi. Numerical Analysis for Bearing Characteristics of Large-Equipment Hoisting Foundation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 137-144,214. doi: 10.13204/j.gyjzg2022050907
    [4]CHEN Tianlei, LI Xudong, GAO Yuguang. EXPERIMENTAL STUDY OF TREATMENT FOR DEEP THICKNESS SELF-WEIGHT COLLAPSIBLE LOESS FOUNDATION WITH TWO-WAY SOIL DISPLACEMENT SCREW PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 1-5,28. doi: 10.13204/j.gyjz202006001
    [5]CHEN Tianlei, NIU Mengshi, XIE Sa. DESIGN PARAMETERS OF SDS-PILE COMPOSITE FOUNDATION IN SELF-WEIGHT COLLAPSIBLE LOESS FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 16-21. doi: 10.13204/j.gyjz202006004
    [6]Chen Zhongqing, Xu Chao, Ye Guanbao, Lu Sheng, Li Junshi. FIELD EVALUATION OF DYNAMIC COMPACTION ON SILT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 106-110. doi: 10.13204/j.gyjz201304022
    [7]Chen Fuquan, Cao Qijun. MECHANISM AND DESIGN METHOD OF GROUND IMPROVEMENT BY RESONANCE COMPACTION METHOD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 117-121. doi: 10.13204/j.gyjz201206025
    [8]Qiang Xiaojun, Zhang Changsheng, Liu Feng. FIELD TEST AND ANALYSIS OF REINFORCED PILE- SUPPORTED FOUNDATION IN LARGE AREA OF SOFT GROUND[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 95-98. doi: 10.13204/j.gyjz201204020
    [9]Wang Enyuan, Wu Mai, Yang Bin. BEARING MECHANISM AND CAPACITY OF PEDESTAL BORED PILE COMPACTED COLUMN-HAMMER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 103-106. doi: 10.13204/j.gyjz201209022
    [10]Wu Jiujiang, Cheng Qiangong, Wang Hanbing, Wen Hua. NUMERICAL ANALYSIS OF GEOSYNTHETIC- REINFORCED AND PILE-SUPPORTED EARTH PLATFORM RESTING ON OVERSIZED DEEP SOFT SOIL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 106-114. doi: 10.13204/j.gyjz2011205020
    [11]Zhan Jinlin, Shui Weihou, He Lijun, Cheng Xiaocheng. EXPERIMENTAL STUDY ON TREATMENT OF THICK GRAVEL SOIL FOR MARINE RECLAMATION LAND USING DYNAMIC COMPACTION OF 18000 kN·m[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 96-99. doi: 10.13204/j.gyjz201004021
    [12]Ren Wenyuan, Zhang Aijun, Xie Dingyi. RESEARCH ON THE AFTER-WORK SHALLOW REINFORCEMENT OPTIMIZATION TECHNOLOGY OF GRANULAR PILE COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 88-92. doi: 10.13204/j.gyjz201011022
    [13]Li Chuanxun, Xie Kanghe, Lu Mengmeng, Yu Kun. THE CRITICAL EDGE LOAD OF COMPOSITE GROUND REINFORCED BY STONE COLUMNS UNDER RIGID FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 62-66. doi: 10.13204/j.gyjz200910016
    [14]Sun Lianhong, Ma Zhibin, Hao Shengqi. THE LINKS DRAWN ATTENTION DURING DESIGN OF THE FOUNDATION FOR A MILL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 4-6. doi: 10.13204/j.gyjz200809002
    [15]Yang Tao, Li Guowei. FIELD TESTS ON PILE2SOIL STRESS RATIO OF CEMENT2SOIL MIXED PILE COMPOSITE GROUND UNDER EMBANKMENT[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 64-67. doi: 10.13204/j.gyjz200802018
    [16]Zhao Honghua, Han Xuanjiang. DEFORMATION STUDY ON COMPOSITE FOUNDATION WITH CEMENT MIXING PILES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 63-65. doi: 10.13204/j.gyjz200706016
    [17]Guo Yuancheng, Li Mingyu, Wang Junli, Zhou Tonghe. FIELD EXPERIMENT ON DYNAMICS CHARACTERS OF LONG-SHORT-PILE COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 53-56. doi: 10.13204/j.gyjz200705014
    [18]Guo Zhongxian, Zhang Yanjun. STUDY ON BEARING MECHANISM AND CRITICAL LENGTH OF RAMMED SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 56-59. doi: 10.13204/j.gyjz200612016
    [19]Wang Ruifang, Lei Xuewen. NUMERICAL ANALYSIS OF STRESS AND SETTLEMENT LAW OF RIGID PILES COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 49-53. doi: 10.13204/j.gyjz200411013
    [20]Yang Suchun. RESEARCH ON THICKNESS OF CUSHION AND PILE- SOIL STRESS RATIO OF CFG PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 44-47. doi: 10.13204/j.gyjz200406015
  • Cited by

    Periodical cited type(9)

    1. 文丹. 沿海地区硫酸盐侵蚀环境下地聚物混凝土力学性能探究. 水利技术监督. 2024(06): 193-195+203 .
    2. 张逸超,杨昊霖,吴晓鑫,周静海,邢成东,刘志成. 地质聚合物混凝土力学性能、耐久性及微观结构综述. 混凝土. 2024(11): 84-87+92 .
    3. 毛志杰,黄靓,吴越,曾令宏,邓鹏,李隐. 纤维增强复合材料约束尾矿粉地聚物再生混凝土轴压性能研究. 工业建筑. 2023(06): 209-217 . 本站查看
    4. 许云鹏,王文新,颜俊,王子涵,何君佐. 偏高岭土基地聚物混凝土力学性能探究. 工业建筑. 2023(S2): 704-707 . 本站查看
    5. 彭晖,张白. 地聚物混凝土耐久性研究进展. 长沙理工大学学报(自然科学版). 2023(05): 1-24 .
    6. 李敬,吴洁,饶峰. 矿冶固废基地质聚合物海工混凝土研究现状与展望. 化工矿物与加工. 2022(03): 53-59 .
    7. 邓芃,宋晓晓,张丽群,冯浩,刘艳. 冻融环境下地聚物混凝土和螺纹钢筋粘结性能. 科学技术与工程. 2022(11): 4547-4555 .
    8. 王维. 高寒地区特大桥混凝土盐冻性能配合比优化研究. 混凝土. 2021(05): 119-122 .
    9. 唐志宇,李作华. 干湿交替作用下沿海地区硫酸盐侵蚀地聚物混凝土力学性质试验研究. 混凝土. 2021(07): 14-17 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.0 %FULLTEXT: 25.0 %META: 75.0 %META: 75.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %北京: 2.5 %北京: 2.5 %台州: 7.5 %台州: 7.5 %张家口: 10.0 %张家口: 10.0 %芒廷维尤: 45.0 %芒廷维尤: 45.0 %芝加哥: 5.0 %芝加哥: 5.0 %西宁: 5.0 %西宁: 5.0 %郑州: 15.0 %郑州: 15.0 %重庆: 2.5 %重庆: 2.5 %其他北京台州张家口芒廷维尤芝加哥西宁郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (271) PDF downloads(2) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return