Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHONG, Yujia, WU. RESEARCH AND ENLIGHTENMENT OF RIVER PLANNING DECISION MECHANISM OF THE RHNE-THUR RIVER REVITALIZATION PROJECT IN SWITZERLAND[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 55-61. doi: 10.13204/j.gyjz202001010
Citation: CHANG Hong, LIU Jinnan, MENG Qingyu. EXPERIMENTAL STUDY ON THERMO-MECHANICAL PROPERTIES OF ENERGY PILES UNDER ACTION OF CYCLIC TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 125-130. doi: 10.13204/j.gyjzG20041107

EXPERIMENTAL STUDY ON THERMO-MECHANICAL PROPERTIES OF ENERGY PILES UNDER ACTION OF CYCLIC TEMPERATURE

doi: 10.13204/j.gyjzG20041107
  • Received Date: 2020-04-11
    Available Online: 2021-04-30
  • Energy piles are combinations of pile foundations and ground source heat pumps. They not only bear the upper building load but also act as media for heat exchange with the shallow geothermal energy, which are of advantage on energy-saving and pollution reduction. Based on indoor model tests, the displacement of pile tops, pile bottom pressure, temperature stress and side friction resistance of energy piles in clay foundation under the action of cyclic temperature were experimentally studied. It was concluded that the rise or fall in temperature could also cause tensile and compressive stress in piles, stress increased first and then decreased in pile shafts from tops to bottoms of piles, and the maximum stress was close to the lower middle parts of piles. The compressive stress of pile bottoms increased with the increase of temperature, and the maximum compressive stress decreased with the increase of temperature cycles. Friction resistance of pile sides increased with the increase of temperature. During the period of being heated and cooled, and the negative friction resistance would be generated on upper parts and lower parts of piles respectively.
  • 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报,2014,36(1):176-181.
    黄芸.桩基埋管换热器换热性能和温变沉降特征研究[D]. 西安:西安建筑科技大学, 2016.
    钱建.循环温度荷载下砂土地基能量桩工作特性研究[D]. 扬州:扬州大学, 2018.
    GASHTI E H N, MALASKA M, KUJALA K. Evaluation of Thermo-Mechanical Behavior of Composite Energy Piles During Heating/Cooling Operations[J]. Engineering Structures, 2014,75(2):363-373.
    桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J].岩土工程学报,2014,36(6):1087-1094.
    王成龙,刘汉龙,孔纲强,等.工作荷载下温度循环对桩基变形与应力的影响分析[J].岩土力学,2016(37):317-322.
    路宏伟,蒋刚,王昊,等.摩擦型能源桩-荷载温度现场联合测试与承载性状分析[J].岩土工程学报,2017,39(2):334-342.
    刘干斌,谢琦峰,范高飞,等.饱和黏土中热交换桩承载力特性模型试验研宄[J].岩石力学与工程学报,2017(10):2535-2543.
    方鹏飞, ABDELMALEK B, WANG B,等.温度对地热能源桩承载性状的影响[J].防灾减灾工程学报, 2017(4):36-41.
    孔纲强,王成龙,刘汉龙,等. 多次温度循环对能量桩桩顶位移影响分析[J].岩土力学, 2017,38(4):958-964.
    郭浩然,乔兰,李远.能源桩与周围土体之间荷载传递模型的改进及其桩身承载特性研究[J].岩土力学,2018,39(11):4043-4052.
    骆湘勤,刘干斌,郑言东,等.考虑温度影响的能源桩桩-土界面荷载传递模型[J].岩石力学与工程学报, 2019, 38(1):171-179.
    YAVARIA N, TANG A M, PEREIRA J M, et al. Mechanical Behaviour of a Small-Scale Energy Pile in Saturated Clay[J].Géotechnique,2016,66(11):1-10.
    CARTNEY J S. Engineering Performance of Energy Foundations[C]//Pan-American CGS Geotechnical Conference.2011:2-6.
  • Relative Articles

    [1]XIONG Ye, DING Yang, CHA Lyuying, CHEN Zizi, LIU Yangwu. Dynamic Characteristics of Axial Flow Compressor Foundations Considering Interaction of Foundation, Pile Foundations and Superstructures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 150-155,149. doi: 10.13204/j.gyjzG21052007
    [4]He Chunbao, Huang Juqing. ANALYSIS OF INTERACTION AMONG ADJACENT RECTANGULAR FOUNDATIONS AND GROUND[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 71-77. doi: 10.13204/j.gyjz201310016
    [5]Zhang Wenqi, Zhang Yong. ELASTIC BUCKLING OF WEB IN I-SECTION STEEL ARCH STRUCTURE SUBJECTED TO UNIFORMLY DISTRIBUTED RADIAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(2): 90-96,52. doi: 10.13204/j.gyjz201102022
    [6]Hong Junqing, Bao Hua. DYNAMIC RESPONSES OF BASE-ISOLATED STRUCTURE UNDER THE NEAR-FAULT HORIZONTAL-VERTICAL SEISMIC ACTION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 11-15,20. doi: 10.13204/j.gyjz201104003
    [7]LüWenzhi, Yu Jianlin, Zheng Wei, Gong Xiaonan, Jing Zijing. STUDY OF ANALYTIC SOLUTION OF COMPOSITE GROUND UNDER FLEXIBLE FOUNDATION BASED ON SUPER-SUB STRUCTURE INTERACTION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 77-83. doi: 10.13204/j.gyjz200904018
    [8]Jin Hui, Zhang Qilin, Xu Zhimin. CALCULATION OF STEEL-PIPE COLUMN BASE CONNECTION UNDER A COMBINATION LOADING OF COMPRESSION,SHEAR AND TWISTING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(12): 84-87. doi: 10.13204/j.gyjz200512023
    [9]Li Zhibing, Lei Zheng, Duan Qicheng. APPLICATION OF A NEW ELEMENT IN INTERACTIION ANALYSIS OF STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 33-36. doi: 10.13204/j.gyjz200505008
    [10]Wang Yingge. FIELD TEST AND NUMERICAL ANALYSIS OF INTERACTION OF PILE- RAFT FOUNDATION ULTRA - HIGH TUBE-IN-TUBE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 10-15. doi: 10.13204/j.gyjz200505003
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 87.0 %META: 87.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %北京: 26.1 %北京: 26.1 %张家口: 2.2 %张家口: 2.2 %杭州: 2.2 %杭州: 2.2 %芒廷维尤: 32.6 %芒廷维尤: 32.6 %西宁: 26.1 %西宁: 26.1 %西雅图: 2.2 %西雅图: 2.2 %重庆: 2.2 %重庆: 2.2 %其他北京张家口杭州芒廷维尤西宁西雅图重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return