ZANG Xueyu, QI Lukuan. DESIGN AND EXPERIMENTAL STUDY OF HONEYCOMB RETAINERS FOR SEISMIC ENERGY-DISSIPATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 114-119. doi: 10.13204/j.gyjzG20031704
Citation:
ZANG Xueyu, QI Lukuan. DESIGN AND EXPERIMENTAL STUDY OF HONEYCOMB RETAINERS FOR SEISMIC ENERGY-DISSIPATION[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(8): 114-119. doi: 10.13204/j.gyjzG20031704
ZANG Xueyu, QI Lukuan. DESIGN AND EXPERIMENTAL STUDY OF HONEYCOMB RETAINERS FOR SEISMIC ENERGY-DISSIPATION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 114-119. doi: 10.13204/j.gyjzG20031704
Citation:
ZANG Xueyu, QI Lukuan. DESIGN AND EXPERIMENTAL STUDY OF HONEYCOMB RETAINERS FOR SEISMIC ENERGY-DISSIPATION[J]. INDUSTRIAL CONSTRUCTION , 2021, 51(8): 114-119. doi: 10.13204/j.gyjzG20031704
DESIGN AND EXPERIMENTAL STUDY OF HONEYCOMB RETAINERS FOR SEISMIC ENERGY-DISSIPATION
Received Date: 2020-03-17
Available Online:
2021-11-10
Publish Date:
2021-11-10
Abstract
The girder bridges which have been widely used are prone to occur lateral girder-falling damage under the earthquake action. In order to improve the limit and energy dissipation effect of the retainers under the earthquake action, based on the characteristics of the energy dissipation of the honeycomb structure under axial compression and combined with the design concept of double-retainer in preventing girder falling, a honeycomb type seismic energy-dissipation retainer was designed. The ABAQUS software was used for numerical simulation and analysis of the retainers, and a full-scale quasi-static test was carried out. The results of the numerical simulation and test were compared. It was found that the numerical simulation analysis and the test results were in good agreement, the structural hysteresis curve was full, and the mechanical model was clear. The following conclusions were drawn: the honeycomb-type seismic energy-dissipation block showed a good bearing capacity, and there was no obvious stiffness degradation during the cyclic loading; the structure had good energy dissipation effect, simple structural form, clear force transmission, which could be widely applied to practical engineering.
References
[1]
庄卫林, 刘振宇, 蒋劲松. 汶川大地震公路桥梁震害分析及对策[J]. 岩石力学与工程学报, 2009, 28(7):1377-1387.
[2]
邓开来, 潘鹏, 冉田苒, 等. 耗能型桥梁抗震挡块试验研究[J]. 振动与冲击, 2014, 33(22):7-12.
[3]
徐略勤, 李建中. 新型滑移挡块的设计、试验及防震效果研究[J]. 工程力学, 2016(2):111-118.
[4]
BILLAH A H M, ALAM M S, BHUIYAN A R. Seismic Performance of a Multi-Span Bridge Fitted with Superelastic SMA-Based Isolator[C]//Proceedings of IABSE-JSCE Joint Conference on Advances in Bridge Engineering-Ⅱ. 2010:8-10.
[5]
秦凯. 桥梁结构双重挡块防落梁构造设计研究[D]. 烟台:烟台大学,2017.
[6]
王克海, 韦韩, 李茜, 等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报, 2012(9):115-121.
[7]
王虹, 王文明, 胡兵林, 等. 纸蜂窝材料的有效缓冲及其预压缩试验[J]. 包装工程, 2012(1):28-31.
[8]
尹汉锋, 文桂林, 马传帅, 等. 蜂窝结构缓冲装置的优化设计[J]. 中国机械工程, 2011(10):1153-1158.
Relative Articles
[1] CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, WANG Yu, KONG Fanfang, PAN Yiwei. Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 48-56.
[2] JIN Xin, HUANG Dong-mei, YAO Ming-zhi, LI Xiao-han. Investigation of Influence of Fishscale Cladding and Aerodynamic Interference on Wind Load and Wind-Induced Response of a Chimney [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 178-185. doi: 10.13204/j.gyjzg21091006
[3] NIE Zhulin, OU Tong, XIN Zhiyong, ZHU Yong, WANG Dayang. OPTIMIZATION OF WIND VIBRATION RESPONSES OF BUILDING STRUCTURES PLANTED ARBORS ON ROOFS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 121-127. doi: 10.13204/j.gyjzG20050604
[4] HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
[7] Zhang Mingliang, Li Qiusheng. EXPERIMENTAL INVESTIGATION ON WIND LOAD CHARACTERISTICS OF ROOF STRUCTURE FOR JILIN RAILWAY STATION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 123-130,30. doi: 10.13204/j.gyjz201204026
[8] He Tiansen, Chao Si, Zhang Xiaoguang, Huang Tao. REINFORCEMENT DESIGN OF CHIMNEY OF NANSHI POWER PLANT [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 123-128. doi: 10.13204/j.gyjz201110029
[9] Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
[10] Pan Hanming, Chen Yiyi, Zhao Xianzhong, Liang Shuo. EXPERIMENTAL STUDY ON THE BIDIRECTIONAL PIN HINGED JOINTS OF GUANGZHOU NEW TV TOWER [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 117-121. doi: 10.13204/j.gyjz200901026
[11] Du Dongshen, Li Aiqun, Shi Qiyin, Li Peibin, Lou Yu. SHAKING TABLE TEST AND FINITE ELEMENT ANALYSIS OF HIGH_RISE CONTROL TOWER OF AIRPORT [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 83-86. doi: 10.13204/j.gyjz200603022
[12] Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
[13] Su Guozhu, Wang Yonghuan, Xu Haixiang, Xu Qing. STRUCTURAL OPTIMUM DESIGN OF ALLOTYPE HIGH TOWER [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 57-59,68. doi: 10.13204/j.gyjz200502016
[14] Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
[15] Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
[16] Zhang Zengdang, Chen Shuifu. WIND-INDUCED VIBRATION RESPONSE ANALYSIS AND STRUCTURAL SCHEME APPRAISAL FOR A THREE-PIPE RC CHIMNEY [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 37-39. doi: 10.13204/j.gyjz200405012
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.6 % FULLTEXT : 15.6 % META : 84.4 % META : 84.4 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 20.3 % 其他 : 20.3 % 其他 : 1.6 % 其他 : 1.6 % 东莞 : 1.6 % 东莞 : 1.6 % 保定 : 1.6 % 保定 : 1.6 % 北京 : 9.4 % 北京 : 9.4 % 台州 : 1.6 % 台州 : 1.6 % 张家口 : 3.1 % 张家口 : 3.1 % 漯河 : 3.1 % 漯河 : 3.1 % 芒廷维尤 : 43.8 % 芒廷维尤 : 43.8 % 西宁 : 12.5 % 西宁 : 12.5 % 重庆 : 1.6 % 重庆 : 1.6 % 其他 其他 东莞 保定 北京 台州 张家口 漯河 芒廷维尤 西宁 重庆