Citation: | WU Zhaofeng. INTELLIGENT FEEDBACK ANALYSIS OF FLUID-SOLID COUPLING ON ADJOINING ROCK OF TUNNELS IN RICH WATER ZONES BASED ON THE GP-DE METHOD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 140-145,205. doi: 10.13204/j.gyjzG20031408 |
梁正召,张永彬,唐世斌,等. 岩体尺寸效应及其特征参数计算[J]. 岩石力学与工程学报,2013,32(6):1157-1166.
|
徐科,沈才华,胡玉田,等.挤密砂桩复合地基的多参数位移反分析研究[J].公路工程,2017,42(1):240-243.
|
MISHRA V, SINGH K N. Microstructural Relation of Macerals with Mineral Matter in Coals from Ib Valley and Umaria,Son-Maha Nadi Basin,India[J]. International Journal of Coal Science & Technology,2017,4(2):191-197.
|
SHAO Y, MACARI E. Information Feedback Analysis in Deep Excavations[J]. International Journal of Geomechanics, 2008, 8(1):91-103.
|
曾永军,胡亮,黄梅.山岭隧道围岩参数反演研究[J].武汉理工大学学报(交通科学与工程版),2018, 42(1):72-76.
|
KAVANAGH K T, CLOUGH R W. Finite Element Applications in the Characterization of Elastic Solids[J]. International Journal of Solids and Structures,1971, 7(1):11-23.
|
LU H F, YUAN B Y, WANG L. Rock Parameters Inversion for Estimating the Maximum Heights of Two Failure Zones in Overburden Strata of a Coal Seam[J]. Mining Science and Technology (China), 2011, 21(1):41-47.
|
李守巨, 刘迎曦, 孙伟. 智能计算与参数反演[M]. 北京:科学出版社, 2008.
|
葛宏伟,梁艳春,刘玮,等. 人工神经网络与遗传算法在岩石力学中的应用[J]. 岩石力学与工程学报,2004,23(9):1542-1550.
|
张继勋,杨帆,任旭华,等.基于遗传算法的地下洞室围岩力学参数反分析[J].现代隧道技术,2018,55(6):53-58.
|
张太俊, 徐磊. 基于异步粒子群优化算法的边坡工程岩体力学参数反演[J]. 三峡大学学报, 2014, 36(1):38-41.
|
冯夏庭,张治强,杨成祥,等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报,1999,18(5):529-633.
|
邓建辉,李焯芬,葛修润. BP网络和遗传算法在岩石边坡位移反分析中的应用[J]. 岩石力学与工程学报,2001,20(1):1-5.
|
周冠南,孙玉永,贾蓬.基于遗传算法的BP神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113.
|
王军祥, 董建华, 陈四利. 基于DEPSO混合智能算法的岩土体应力-渗流-损伤耦合模型多参数反演研究[J]. 应用基础与工程科学学报, 2018, 26(4):872-887.
|
李义罡,焦朋朋,乔伟栋.基于改进粒子群优化BP神经网络的弯道转向行为预测[J].公路交通科技, 2019,36(10):128-136.
|
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Massachusetts:MIT Press, 2006.
|
李术才,赵岩,徐帮树,等. 海底隧道涌水量数值计算的渗透系数确定方法[J].岩土力学,2012, 33(5):1497-1512.
|