Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 51 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
MIN Guangyun, LIU Xiaohui, ZHOU Xiaohui, CAI Mengqi, YI Hangyu. PARAMETRIC VIBRATION MODELING AND RESONANCE ANALYSIS FOR TENSION SUSPENSION CABLE UNDER HORIZONTAL MOVABLE BOUNDARY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 99-104. doi: 10.13204/j.gyjzG20030204
Citation: MIN Guangyun, LIU Xiaohui, ZHOU Xiaohui, CAI Mengqi, YI Hangyu. PARAMETRIC VIBRATION MODELING AND RESONANCE ANALYSIS FOR TENSION SUSPENSION CABLE UNDER HORIZONTAL MOVABLE BOUNDARY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(4): 99-104. doi: 10.13204/j.gyjzG20030204

PARAMETRIC VIBRATION MODELING AND RESONANCE ANALYSIS FOR TENSION SUSPENSION CABLE UNDER HORIZONTAL MOVABLE BOUNDARY

doi: 10.13204/j.gyjzG20030204
  • Received Date: 2020-03-02
    Available Online: 2021-08-19
  • The model of parametric vibration for tension suspension cable with horizontal movable boundary is established, and the partial differential vibration equation was derived by Hamilton Principles. According to the boundary constraint, modal superposition method, and Galerkin method, the partial differential equation was transformed into an ordinary differential equation. The modes about resonance of the ordinary differential equation were analyzed by the perturbation method, and the displacement responses of the tension suspension cable under different resonance modes were solved by using the fourth-order Runge-Kutta function. Finally, the safety of the two resonance modes was evaluated by a specific numerical example. The results showed that the displacement of the x-axis in the 1:1:1:1:1 resonance mode was only 31.25% of that in the 1:1:2:1 resonance mode, and the displacement of the z-axis in the 1:1:1:1:1 resonance mode was only 2.181% of that in the 1:1:2:1 resonance mode. The frequency of horizontal excitation was far away from the in-plane natural frequency as far as possible to ensure that the amplitude of the cable was in a safe range.
  • loading
  • [1]
    IRVINE H M, CAUGHEY T K. The Linear Theory of Free Vibrations of a Suspended Cable[J]. Proceedings of the Royal Society A,1974, 341(1626):299-315.
    [2]
    WU J S, CHEN C C. The Dynamic Analysis of a Suspended Cable Due to a Moving Load[J]. International Journal for Numerical Methods in Engineering, 1989, 28(10):2361-238.
    [3]
    PERKINS N C. Modal Interactions in the On-Linear Response of Elastic Cables Under Parametric/External Excitation[J]. International Journal of Non-Liner Memhanics,1992,27(2):233-250.
    [4]
    LUONGO A, PICCARDO G. Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance[J]. Journal of Sound and Vibration,1998, 214(5):915- 940.
    [5]
    REGA G. Nonlinear Vibrations of Suspended Cables-Part I:Modeling and Analysis[J]. Appl Mech Rev, 2004, 57(6):443-478.
    [6]
    REGA G. Nonlinear Vibrations of Suspended Cables-Part II:Deterministic Phenomena[J]. Appl Mech Rev, 2004, 57(6):479-514.
    [7]
    IBRAHIM R A. Nonlinear Vibrations of Suspended Cables-Part III:Random Excitation and Interaction with Fluid Flow[J]. Appl Mech Rev, 2004, 57(6):515-549.
    [8]
    赵跃宇,李永鼎,王连华.悬索的多重内共振研究[J].力学季刊,2008(1):15-23.
    [9]
    吕建根,康厚军.考虑弯曲刚度斜拉索面内面外内共振分析[J].力学季刊,2016,37(3):572-580.
    [10]
    杨素哲,陈艾荣.超长斜拉索的参数振动[J].同济大学学报(自然科学版),2005(10):27-32.
    [11]
    赵珧冰,黄超辉,林恒辉,等.考虑温度效应的索梁面内动力学建模及特性分析[J].力学季刊,2018,39(3):573-579.
    [12]
    彭剑,李禄欣,赵珧冰,等.轴向时滞反馈控制下悬索非线性响应分析[J].应用力学学报,2018,35(1):81-85.
    [13]
    闵光云,刘小会,孙测世,等.动张力简化方法对输电线舞动的影响研究[J].应用力学学报,2020,37(4):1717-1723.
    [14]
    汪峰,文晓旭,刘章军.斜拉桥塔-索-桥面连续耦合参数振动特性分析[J].应用力学学报,2015,32(2):340-346

    ,360.
    [15]
    刘小会,闵光云,孙测世,等.直接法与间接法对拉索耦合内共振的影响研究[J].应用力学学报,2020,37(03):1088-1098.
    [16]
    陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003(4):70-75.
    [17]
    康厚军,赵跃宇,蒋丽忠.参数振动和强迫振动激励下超长拉索的面内非线性振动[J].中南大学学报(自然科学版),2011,42(8):2439-2445.
    [18]
    刘小会,闵光云,严波,等.不同自由度下覆冰四分裂导线舞动特征分析[J].力学季刊,2020,41(2):370-383.
    [19]
    HUANG K, FENG Q, YIN Y. Nonlinear vibration of the coupled structure of suspended-cable-stayed beam-1:2 internal resonance[J]. Acta Mechanica Solida Sinica, 2014, 27(5):467-476.
    [20]
    COSTA A P, MARTINS J A C, BRANCO F, et al. Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and/or Towers[J]. Journal of Engineering Mechanics, 1996, 122(7):613-622.
    [21]
    汪至刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2001(1):103-109.
    [22]
    闵光云,刘小会,蔡萌琦,等.考虑温度效应的覆冰导线动力学建模及舞动特征研究[J].力学与实践,2021,43(1):84-93.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return