Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Gao Xiaojian, Ba Hengjing, Ma Baoguo. THE RELATIONSHIP AMONG CEMENT HYDRATION DEGREE, COMPRESSIVE STRENGTH AND AUTOGENOUS SHRINKAGE OF CONCRETE AT EARLY AGES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 64-67. doi: 10.13204/j.gyjz200602019
Citation: XIE Wangjun, CHEN Zongping, ZHOU Ji. EXPERIMENTAL STUDY ON BONDING PROPERTIES OF CONCRETE FILLED SQUARE STEEL TUBES AFTER FIRE SPRINKLER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 135-143,134. doi: 10.13204/j.gyjzG19122306

EXPERIMENTAL STUDY ON BONDING PROPERTIES OF CONCRETE FILLED SQUARE STEEL TUBES AFTER FIRE SPRINKLER COOLING

doi: 10.13204/j.gyjzG19122306
  • Received Date: 2019-12-23
    Available Online: 2021-03-31
  • In order to reveal the bond-slip behavior between steel tube and core concrete after fire sprinkler cooling, 23 concrete-filled square steel tube (CFSST) specimens were designed and manufactured, and the variation parameters included the maximum temperature, the anchorage length of concrete, the concrete strength and the cooling mode. Through the push-out test, the failure modes of the specimens were observed, the whole load-slip curve and characteristic parameters were obtained,the influence of different parameters on the bond strength of the interface was analyzed, the calculation formula was put forward and the load-slip constitutive relationship model was constructed.The results showed that the shape of load-slip curve at the loading end was similar to that at the free end, and the free end sliped later.With the increase of maximum temperature, the interfacial bond strength increased first and then decreased, and reached its peak at 600 ℃. At the same time, the anchorage length had a significant effect on the interfacial bond strength and the relationship between them was inverse. The interfacial bond strength of the specimens cooled by fire sprinkler was lower than that of the natural cooling specimens.The decreasing range was gradually increased with the increase of temperature.
  • 韩林海,杨有福. 现代钢管混凝土结构技术[M]. 北京:中国建筑工业出版社,2007:5-55.
    蔡绍怀. 现代钢管混凝土结构[M]. 北京:人民交通出版社, 2003:1-15.
    薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J]. 建筑科学, 1996(3):22-28.
    VIRDI K S,DOWLING P J. Bond Strength in Concrete Filled Steel Tubes[J]. IABSE Periodica, 1980(3):125-139.
    SHAKIR-KHALIL H.Push-Out Strength of Concrete-Filled Steel Hollow Sections[J]. The Structural Engineer, 1993,71(6):230-233.
    薛立红,蔡绍怀. 钢管与核心混凝土界面粘结强度的试验研究[J]. 工程力学,1994(增刊):569-574.
    康希良. 钢管混凝土组合力学性能及粘结滑移性能研究[D]. 西安:西安建筑科技大学,2008.
    杨有福,韩林海. 矩形钢管自密实混凝土的钢管-混凝土界面黏结性能研究[J]. 工业建筑,2006,36(11):32-36.
    陈宗平,徐金俊,薛建阳,等. 钢管再生混凝土黏结滑移推出试验及黏结强度计算[J].土木工程学报, 2013(3):49-58.
    许开成,毕丽苹,陈梦成. 钢管混凝土界面黏结应力-滑移本构关系试验研究[J].建筑结构学报, 2015,36(增刊1):407-412.
    TAO Z,HAN L H,UY B,et al. Post-Fire Bond Between the Steel Tube and Concrete in Concrete-Filled Steel Tubular Columns[J]. Journal of Constructional Steel Research, 2011,67(3):484-496.
    李俊华. 高温后型钢混凝土粘结滑移性能研究[J]. 工程力学,2015,32(2):190-200

    ,206.
    陈宗平,周文祥,徐金俊. 高温后型钢高强混凝土界面黏结滑移性能试验研究[J].建筑结构学报,2015,36(12):106-115.
    陈宗平,刘祥,周文祥. 高温后圆钢管高强混凝土界面黏结性能试验研究[J]. 工程力学, 2018,35(8):192-200

    ,256.
    陈宗平,刘祥,徐金俊,等. 高温后方钢管高强混凝土界面黏结性能试验研究[J]. 建筑结构学报, 2017,38(6):133-143.
    谢旺军.高温后消防喷水钢管混凝土界面黏结滑移性能试验研究[D]. 南宁:广西大学,2018.
    BSI.Steel Concrete and Composite Bridges-Part 5:Code of Practice for the Design of Composite Bridges:BS 540025:2005[S]. British Standard Institute, 2005.
    Eurocode 4(EC4). Design of Composite Steel and Concrete Structures-Part 1-1:General Rules and Rules for Buildings[S]. Brussels:CEN, 2004.
    AIJ. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structure[S]. Tokyo:Architectural Institute of Japan (AIJ), 1997.
    福州省建设厅. 钢-混凝土混合结构技术规程:DBJ 13-61-2004[S].福州:福建省建设厅, 2003.
  • Relative Articles

    [1]ZHAO Muzi, XU Chengyan, WANG Yuyin, GENG Yue, GONG Chao. Dilation Ratio and Modeling of Recycled Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 143-150,82. doi: 10.13204/j.gyjzG23051513
    [2]YU Zheng, SUN Hongyang, WANG Lijun. SEISMIC PERFORMANCES OF SINGLE-STORY INDUSTRIAL FACTORY BUILDINGS UNDER ELASTIC STRUCTURE DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 55-63. doi: 10.13204/j.gyjz201907170003
    [3]DANG Yujing. A DISCUSSION ON THE ADJUSTMENT FACTOR OF SEISMIC BEARING CAPACITY FOR CFG-PILE COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 97-101. doi: 10.13204/j.gyjzG19090330
    [5]Song Yupu, Zhang Xiaoli. INFLUENCE OF STRAIN RATE ON EARTHQUAKE RESISTANCE EFFECT OF REINFORCED CONCRETE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 7-11,6. doi: 10.13204/j.gyjz201203002
    [6]Zhang Chunming. REGULATION OF "THE CODE FOR ASEISMIC DESIGN OF BUILDINGS"(2008 EDITION)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 136-140. doi: 10.13204/j.gyjz200910030
    [7]Peng Lingyun, Yan Weiming, Wu Honglei, Cao Qiang. DISCUSSION ON THE INTERNAL FORCE ADJUSTION IN SEISMIC DESIGN OF MAIN BUILDINGS FOR THERMOELECTRICAL POWER PLANT WITHOUT SHEAR WALL IN TRANSVERSE DIRECTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 16-18,29. doi: 10.13204/j.gyjz200807004
    [8]Jiang Lizhong, Zou Fei, Qi Jingjing, Yu Zhiwu. THE INFLUENCE OF HORIZONTAL RElNFORCEMENT RATIO ON SEISMIC BEHAVIOR OF STEEL CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 1-4,13. doi: 10.13204/j.gyjz200708001
    [9]Wang Shiying, Wang Xiaoping. BEARING CAPACITY RESEARCH ON ARCHED CORRUGATED STEEL ROOF WITH UNEQUAL ALTITUDE SUPPORT[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 100-102. doi: 10.13204/j.gyjz200705025
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.8 %FULLTEXT: 13.8 %META: 86.2 %META: 86.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.1 %其他: 12.1 %伊利诺伊州: 1.7 %伊利诺伊州: 1.7 %北京: 3.4 %北京: 3.4 %芒廷维尤: 65.5 %芒廷维尤: 65.5 %西宁: 12.1 %西宁: 12.1 %重庆: 1.7 %重庆: 1.7 %阳泉: 3.4 %阳泉: 3.4 %其他伊利诺伊州北京芒廷维尤西宁重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return