Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
Citation: WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502

DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR

doi: 10.13204/j.gyjzG19092502
  • Received Date: 2019-09-25
    Available Online: 2021-03-31
  • Microbial mineralized geotechnical materials are new kinds of rock-like green materials, which matrix particles are cemented and pores are filled with calcium carbonate precipitation induced by mineralization properties of microbial metabolism. The curves of pore-size distribution for the material after enduring drying-wetting cycles and corroded by different salt solutions were obtained by NMR, the relationships between the pore size and porosity were analyzed, and the change rule of the micro-pore structure for the material was studied. The results showed that under the combined action of corrosion and dry-wet cycling, the material would be destroyed sooner, which was characterized by spalling and loss of particles, and the damage would be aggravated under the condition of compound salt. During the process of salt corrosion and dry-wet cycling, the porosity of materials was related to the degree of material damage and exfoliation, and the pore-size distribution of different pores in the materials changed continuously with the increase of cycles. The pore-size distribution of macropores (100 to 1 000 μm) was the most and increasing with the increase of cycles. The cumulative changes of micropores (<1 μm) were significantly correlated with the porosity which characterized the degree of material damage. The research results could provide references to the engineering practices of the materials in the salt environment from the perspective of micro-pore structure changes.
  • 曹健. 轴压荷载下干湿循环-硫酸盐侵蚀耦合作用混凝土长期性能[D]. 北京:北京交通大学, 2013.
    THEIVAKULARATNAM M, GNANENDRAN C T. Durability of Lightly Stabilised Granular Material Subjected to Freeze-Thaw and Wet-Dry Cycles[J]. Geotechnical Special Publication, 2015:1410.
    PAOLA V, NATALIA A M,JORGE I T. Performance and Microstructural Analysis of Lightweight Concrete Blended with Nanosilica Under Sulfate Attack[J/OL]. Advances in Civil Engineering. http://doi.org/10.1155/2018/2715474.
    亢景富. 混凝土硫酸盐侵蚀研究中的几个基本问题[J].混凝土, 1995(3):9-18.
    陈鹏, 金祖权, 代雪艳,等. 硫酸盐干湿循环作用内养护混凝土损伤研究[J]. 四川建筑科学研究, 2017, 43(3):41-45.
    高秀利, 刘浩, 石亮. 硫酸盐干湿交变作用下混凝土防腐技术应用对比[J]. 新型建筑材料, 2016, 43(5):45-48.
    尹世平, 王波, 强东峰,等. 氯盐干湿循环下纤维编织网增强混凝土力学性能[J]. 建筑材料学报, 2016, 19(4):752-757.
    刘子铭, 熊锐, 关博文,等. 不同pH值条件下水泥砂浆硫酸盐侵蚀损伤评价[J]. 硅酸盐通报, 2016, 35(7):2247-2253.
    OLSHANSKY Y, ROOT R A, CHOROVER J. Wet-Dry Cycles Impact DOM Retention in Subsurface Soils[J]. Biogeosciences, 2018, 15(3):821-832.
    何静,申向东,董伟.在盐溶液下风积沙水泥砂浆的抗冻性能研究[J]. 硅酸盐通报,2016,35(4):1159-1163

    ,1183.
    逯静洲, 朱孔峰, 田立宗, 等. 荷载-硫酸盐侵蚀作用后高强混凝土的力学特性[J]. 工业建筑, 2018,48(3):11-16.
    PHILLIPS A J, TROYER E, HIEBERT R, et al. Enhancing Wellbore Cement Integrity with Microbially Induced Calcite Precipitation (MICP):A Field Scale Demonstration[J]. Journal of Petroleum Science and Engineering, 2018,171:1141-1158.
    李驰,王硕,王燕星. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019,40(4):1291-1298.
    梁仕华, 牛九格, 房采杏,等. 微生物固化砂土的研究进展[J]. 工业建筑, 2018,48(7):1-9

    ,15.
    CHU J, STABNIKOV V, IVANOV V, et al. Microbial Method for Construction of an Aquaculture Pond in Sand[J]. Géotechnique, 2013, 63(10):871-875.
    彭劼, 田艳梅, 杨建贵. 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39(1):62-66.
    LI C, YAO D, LIU S H, et al. Improvement of Geomechanical Properties of Bio-Remediated Aeolian Sand[J]. Geomicro Biology Journal, 2017, 35(2):132-140.
    许燕波, 钱春香, 陆兆文. 甘油提高巴氏芽孢杆菌脲酶的热稳定性[J]. 东南大学学报(自然科学版), 2013, 43(1):147-151.
    赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京:中国地质大学(北京), 2014.
    肖卫, 余红发, 翁智财,等. 环境类型与氯盐浓度对矿渣混凝土表面氯离子浓度的影响[J]. 硅酸盐通报, 2015, 34(1):1-6.
    孙洋, 刁波. 冻融与化学物质腐蚀环境下混凝土力学性能退化的试验研究[C]//全国结构工程学术会议论文集.2008.
    禹虹机. 不同类盐蚀对混凝土的宏-细观损伤机理[D]. 长春:吉林大学, 2017.
    薛慧君, 申向东, 王仁远,等. 风沙吹蚀与干湿循环作用下风积沙混凝土抗氯盐侵蚀机理[J]. 农业工程学报, 2017, 33(18):118-126.
    卞瑞姣, 曹荣, 赵玲,等. 基于低场核磁共振技术检测秋刀鱼腌干制过程水分状态变化[J].食品安全质量检测学报, 2017, 8(5):1698-1703.
    王颖,刘瑾,马晓凡,等.基于核磁共振的聚氨酯固化砂土浸水作用分析[J].岩土工程学报,2020,42(12):2342-2349.
  • Relative Articles

    [1]ZHANG Minxia, CHEN Chen, NIU Shuangjian, FENG Congrui, XU Ping, CAI Baoshuai. Digital Image Analysis on Structure of Constructional Waste Soil Cemented by Microorganisms[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 43-50. doi: 10.3724/j.gyjzG23080412
    [2]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [3]WANG Lei, WANG Bo, LIU Zhiqiang, CHANG Xinhao. Advances of Soil Cemented by Enzyme Induced Calcium Carbonate Precipitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 57-66. doi: 10.13204/j.gyjzG22061503
    [4]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [5]LIU Zhong, XIAO Shuiming, LIU Feifei, LONG Wenliang, ZHANG Minxia. Experimental Study on Influence Factors of Anti-Wind Erosion and Anti-Dust for Construction Debris Cemented by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 71-78. doi: 10.13204/j.gyjzG22070609
    [6]WANG Yi, TONG Huawei, QIU Rongkang, YUAN Jie. RESEARCH ON MECHANICAL PROPERTIES OF RUBBER-PARTICLE-IMPROVED SOIL CEMENTED BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 8-14,7. doi: 10.13204/j.gyjzG20062207
    [14]Han Zhiguang Cheng Xiaohui, . NUTRITIVE SALT'S IMPACT ON MICROORGANISM STRENGTHENING LIQUEFIABLE SANDY SOIL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 19-22. doi: 10.13204/j.gyjz201507004
    [15]Zhang Hechao, Guo Hongxian, Li Meng, Cheng Xiaohui. EXPERIMENTAL RESEARCH OF MICROBIAL-INDUCED CLOGGING IN SANDS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 139-142. doi: 10.13204/j.gyjz201501028
    [16]Cheng Xiaohui Yang Zuan Li Meng Guo Hongxian, . MICROBIAL MODIFIED GEOMATERIALS: A METHODOLOGY REVIEW[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 1-7. doi: 10.13204/j.gyjz201507001
    [17]Zhang Shuai Cheng Xiaohui, . NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON STABILIZATION OF LIQUEFIABLE SAND FOUNDATION BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 23-27. doi: 10.13204/j.gyjz201507005
    [18]Guo Hongxian Zhang Yue Cheng Xiaohui Ma Ruinan, . CRACK REPAIR AND SURFACE DEPOSITION OF CEMENT-BASED MATERIALS BY MICP TECHNOLOGY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 36-41. doi: 10.13204/j.gyjz201507008
    [19]Tan Qian Guo Hongxian Cheng Xiaohui, . EXPERIMENTAL STUDY OF STRENGTH AND DURABILITY OF MICROBIAL CEMENT MORTAR[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 42-47. doi: 10.13204/j.gyjz201507009
    [20]Zhang Yue, Guo Hongxian, Cheng Xiaohui, Li Meng. FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 138-143. doi: 10.13204/j.gyjz201312026
  • Cited by

    Periodical cited type(3)

    1. 王燕星,高瑜,杨国辉,牛恒茂,刘斌,任雪丹. 微生物矿化技术改良砒砂岩风化土的冻融特性试验研究. 工业建筑. 2024(09): 10-18 . 本站查看
    2. 于本田,夏俊英,杨斌,王焕,谢超,张凯. 川藏铁路石灰石粉–水泥基材料抗低温硫酸盐侵蚀研究. 工程科学与技术. 2022(04): 1-11 .
    3. 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究. 浙江大学学报(工学版). 2022(09): 1740-1749 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.9 %FULLTEXT: 5.9 %META: 89.1 %META: 89.1 %PDF: 5.0 %PDF: 5.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %China: 4.1 %China: 4.1 %[]: 0.9 %[]: 0.9 %上海: 1.8 %上海: 1.8 %东莞: 0.5 %东莞: 0.5 %信阳: 0.5 %信阳: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 9.5 %北京: 9.5 %十堰: 0.5 %十堰: 0.5 %南京: 0.5 %南京: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %大连: 1.4 %大连: 1.4 %天津: 3.6 %天津: 3.6 %太原: 1.4 %太原: 1.4 %常州: 0.5 %常州: 0.5 %常德: 0.5 %常德: 0.5 %广州: 1.4 %广州: 1.4 %廊坊: 0.5 %廊坊: 0.5 %张家口: 0.5 %张家口: 0.5 %成都: 2.7 %成都: 2.7 %扬州: 0.5 %扬州: 0.5 %昆明: 0.5 %昆明: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.9 %杭州: 0.9 %桂林: 0.5 %桂林: 0.5 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.5 %沈阳: 0.5 %济南: 1.8 %济南: 1.8 %温州: 0.5 %温州: 0.5 %湖州: 0.5 %湖州: 0.5 %漯河: 0.5 %漯河: 0.5 %珠海: 0.5 %珠海: 0.5 %白城: 1.8 %白城: 1.8 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.5 %福州: 0.5 %秦皇岛: 0.5 %秦皇岛: 0.5 %美国伊利诺斯芝加哥: 0.9 %美国伊利诺斯芝加哥: 0.9 %芒廷维尤: 5.4 %芒廷维尤: 5.4 %芝加哥: 2.3 %芝加哥: 2.3 %衡水: 0.5 %衡水: 0.5 %衢州: 0.9 %衢州: 0.9 %西宁: 20.4 %西宁: 20.4 %西安: 2.3 %西安: 2.3 %贵阳: 2.3 %贵阳: 2.3 %运城: 7.7 %运城: 7.7 %邯郸: 0.5 %邯郸: 0.5 %郑州: 2.7 %郑州: 2.7 %重庆: 2.3 %重庆: 2.3 %镇江: 0.5 %镇江: 0.5 %长春: 0.5 %长春: 0.5 %长沙: 1.4 %长沙: 1.4 %阳江: 0.5 %阳江: 0.5 %阳泉: 0.5 %阳泉: 0.5 %其他China[]上海东莞信阳兰州北京十堰南京呼和浩特大连天津太原常州常德广州廊坊张家口成都扬州昆明晋城朝阳杭州桂林武汉沈阳济南温州湖州漯河珠海白城石家庄福州秦皇岛美国伊利诺斯芝加哥芒廷维尤芝加哥衡水衢州西宁西安贵阳运城邯郸郑州重庆镇江长春长沙阳江阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (196) PDF downloads(13) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return