HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
Citation:
HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
Citation:
HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
A rigid structure model of long-span flat roof with overhanging eaves was designed and tested in wind tunnel. The average wind pressure and fluctuating wind pressure coefficients of the measured points on the surface of the model roof were obtained. Then the wind pressure coefficients at the joints were calculated by proper orthogonal decomposition (POD) method. The finite element analysis software ANSYS was used to analyze the wind-induced vibration response and the performance of vibration reduction. The results showed that negative wind pressure of overhanging eaves was large due to the superposition of upper and lower surface wind pressure. The effect of adding viscoelastic dampers on the corners of the eaves was remarkable for controlling the wind-induced vibration response of overhanging eaves. For the existing grid structures with certain degree of corrosion, the wind-induced response increased with the increase of corrosion depth, and the viscoelastic damper had an obvious effect on wind-induced vibration reduction.When the corrosion depth was less than 1 mm, the damping coefficient of root mean square of displacement response reached 10.3%~21.0%, and the damping coefficient of peak acceleration response reached 26.3%~39.6%.
KAREEM A, KIJEWSKI T. 7th US National Conference on Wind Engineering:A Summary of Papers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 62:81-129.