Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Shen De-jian, Wu Sheng-xing. EXPERIMENTAL STUDY ON THE LONGITUDINAL CRACKS DUE TO STEEL CORROSION IN CONCRETE BEAMS IN ATMOSPHERIC ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 77-80. doi: 10.13204/j.gyjz200711021
Citation: MA Yingchang, LIU Haifeng, ZHANG Minghu. EFFECTS OF DESERT SAND REPLACEMENT RATE AND FLY ASH CONTENT ON THE COMPRESSIVE STRENGTH OF CONCRETE UNDER LOW TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 81-87,80. doi: 10.13204/j.gyjz202005014

EFFECTS OF DESERT SAND REPLACEMENT RATE AND FLY ASH CONTENT ON THE COMPRESSIVE STRENGTH OF CONCRETE UNDER LOW TEMPERATURE

doi: 10.13204/j.gyjz202005014
  • Received Date: 2019-08-20
  • Publish Date: 2020-07-14
  • In order to study the effects of desert sand replacement rate and fly ash content on the compressive strength of concrete under low temperature, the compressive strength tests of concrete with desert sand, fly ash, the mixture of desert sand and fly ash under room temperature, -10℃, -20℃, -30℃ were carried out. The influences of temperature, desert sand replacement rate and fly ash content on the compressive strength of concrete were analyzed. The regression model between the compressive strength of concrete with temperature, desert sand replacement rate and fly ash content was established. The test results showed that the compressive strength of concrete increased under low temperature with the decrease of temperature. Whereas, after being subjected to low temperature, the compressive strength of concrete decreased with the decrease of temperature. For the concrete with desert sand, the compressive strength of concrete increased firstly, and then decreased with the increase of desert sand replacement rate. The compressive strength of concrete with desert sand replacement rate 50% was the maximum value. For the concrete with fly ash, the compressive strength of concrete tended to decrease with the increase of fly ash content. For the concrete with the mixture of desert sand and fly ash, the compressive strength of concrete reached the maximum value when desert sand replacement rate and fly ash content were 50% and 10%, respectively.
  • MEHTA P K. Durability of Concrete-Fifty Years of Progress[C]//Proceedings of the 2nd International Conference on Durability of Concrete. Farmington Hills:ACI, 1991:1-31.
    MIURA T. The Properties of Concrete at Very Low Temperatures[J]. Materials and Structures, 1989, 22(4):243-254.
    王传星,谢剑,李会杰.低温环境下混凝土性能的试验研究[J]. 工程力学, 2011, 28(增刊2):182-186.
    时旭东,张亮,郑建华,等.低温-常温循环作用下混凝土力学性能试验研究[J]. 混凝土与水泥制品, 2012(7):6-10.
    洪锦祥,缪昌文,刘加平,等.冻融损伤混凝土力学性能衰减规律[J]. 建筑材料学报, 2012, 15(2):173-178.
    曹大富,富立志,杨忠伟,等.冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013, 16(1):17-23

    ,32.
    李响,谢剑,吴洪海.超低温环境下混凝土本构关系试验研究[J].工程力学,2014, 31(增刊1):195-200.
    张楠,廖娟,戢文占,等.混凝土低温力学性能及试验方法[J]. 硅酸盐学报, 2014, 42(11):1404-1408.
    时旭东,马驰,张天申,等.不同强度等级混凝土-190℃时受压强度性能试验研究[J]. 工程力学, 2017, 34(3):61-67.
    杨红霞,闫竹玲,刘雅君.陕北沙漠特细砂混凝土性能的实验研究[J].水泥与混凝土,2005(1):6-8.
    张国学,杨建森.腾格里沙漠砂的工程性质试验研究[J]. 公路, 2003(增刊1):131-134.
    刘海峰,马菊荣,付杰,等. 沙漠砂混凝土力学性能研究[J]. 混凝土, 2015(9):80-83,86.
    刘海峰,付杰,马菊荣,等. 沙漠砂高强混凝土力学性能研究[J]. 混凝土与水泥制品, 2015(2):21-24,28.
    付杰,马菊荣,刘海峰.粉煤灰掺量和沙漠砂替代率对沙漠砂混凝土力学性能影响[J]. 广西大学学报(自然科学版), 2015, 40(1):93-98.
    付杰,杨登,刘海峰,等. 粉煤灰掺量和沙漠砂替代率对高强沙漠砂混凝土力学性能影响[J]. 科学技术与工程, 2015, 15(9):230-234.
    CHATTERJI S. Aspects of the Freezing Process in a Porous Material-Water System:Part 1. Freezing and the Properties of Water and Ice[J]. Cement and Concrete Research, 1999, 29(4):627-630.
  • Relative Articles

    [1]LIANG Xu, WANG Yunhao, TAN Lik-ho, HU Lili, FENG Peng. A New Reinforcement Technique and Stability Analysis for Large Composite Storage Tank Roofs[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 140-146. doi: 10.3724/j.gyjzG23092009
    [2]XIAO Mingqing, PAN Wentao, FENG Kun, JIAO Qizhu, TANG Xiongjun, ZHANG Jingxuan. Influences of Train Vibration on Integrated Assembled Internal Structures of Shield Tunnels Foundations on Cavities[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 42-49. doi: 10.13204/j.gyjzG22090118
    [3]SHI Kairong, LIN Jinlong, XU Jiebin, JIANG Zhengrong, SUN Hui, CHEN Ju, LIN Lin. FULL-SCALE STABILITY EXPERIMENT AND FINITE ELEMENT ANALYSIS OF A NEW ARRAY COMBINED FORMWORK SUPPORT SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 142-146. doi: 10.13204/j.gyjz202003024
    [4]QIAN Xiaoxu, HAN Xiaojian, HONG Baoning, PENG Yang. DYNAMIC CHARACTERISTICS STUDY OF ADDING STORY WITH DIFFERENT ISOLATING SYSTEMS OF FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 184-189,167. doi: 10.13204/j.gyjzG19110801
    [7]Yang Ping. STABILITY ANALYSIS AND REINFORCEMENT TECHNOLOGY RESEARCH OF CHICKEN CLAW TRENCH HIGH ROCKFILL EMBANKMENT IN MOUNTAINOUS AREAS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 166-173. doi: 10.13204/j.gyjz201505035
    [8]Zhang Xinlian, Song Erxiang, Xu Ming. INFLUENCE OF NONLINEAR STRENGTH OF ROCKFILL ON SLOPE STABILITY OF HIGH FILLS IN MOUNTAINOUS REGIONS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 65-69. doi: 10.13204/j.gyjz201012017
    [9]Yao Zhixiong, Zhou Ruizhong, Shi Cheng'en. STUDY ON MATERIAL'S FRACTURE MECHANICAL PROPERTIES BASED ON NEW REACTIVE POWDER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 71-73,95. doi: 10.13204/j.gyjz200507020
    [10]Zhu Aijun, Deng Anfu, Huang Zhihong, Cai Changan, Yang Shizhong. ANALYSIS OF SPREADING FOUNDATION S BASE REACTION ON ROCK FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(4): 53-56. doi: 10.13204/j.gyjz200404016
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 85.8 %META: 85.8 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 30.3 %其他: 30.3 %上海: 0.6 %上海: 0.6 %北京: 9.7 %北京: 9.7 %太原: 0.6 %太原: 0.6 %宣城: 2.6 %宣城: 2.6 %宿州: 0.6 %宿州: 0.6 %常德: 0.6 %常德: 0.6 %张家口: 1.9 %张家口: 1.9 %昆明: 2.6 %昆明: 2.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %沈阳: 0.6 %沈阳: 0.6 %济南: 0.6 %济南: 0.6 %淮北: 1.9 %淮北: 1.9 %深圳: 2.6 %深圳: 2.6 %漯河: 1.9 %漯河: 1.9 %石家庄: 0.6 %石家庄: 0.6 %石河子: 5.8 %石河子: 5.8 %芒廷维尤: 11.0 %芒廷维尤: 11.0 %芝加哥: 9.7 %芝加哥: 9.7 %苏州: 0.6 %苏州: 0.6 %西宁: 1.9 %西宁: 1.9 %贵阳: 1.3 %贵阳: 1.3 %运城: 6.5 %运城: 6.5 %邯郸: 0.6 %邯郸: 0.6 %郑州: 1.9 %郑州: 1.9 %重庆: 0.6 %重庆: 0.6 %长沙: 0.6 %长沙: 0.6 %其他上海北京太原宣城宿州常德张家口昆明晋城朝阳沈阳济南淮北深圳漯河石家庄石河子芒廷维尤芝加哥苏州西宁贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return