Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YE Qingyang, XUE Congcong, YU Min, WU Mingyang. MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 124-130,141. doi: 10.13204/j.gyjz202003021
Citation: YE Qingyang, XUE Congcong, YU Min, WU Mingyang. MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 124-130,141. doi: 10.13204/j.gyjz202003021

MIX PROPORTION DESIGN AND COMPRESSIVE STRENGTH TEST OF ULTRA-HIGH PERFORMANCE CONCRETE

doi: 10.13204/j.gyjz202003021
  • Received Date: 2019-08-20
  • At present, the research on mix proportion of ultra-high performance concrete (UHPC) focus on reactive powder concrete (RPC), and the incorporation of coarse aggregate in RPC can reduce the cost and the shrinkage of concrete, but the research on the mix proportion of CA-UHPC is relatively less. The paper discussed the influence of raw materials, production costs and production processes on the development and application of UHPC, and proposed a more economical and reasonable design of UHPC mix proportion. Under the simulated construction environment and simplifying the curing process, by manufacturing 38 sets of UHPC cube test blocks, the water-binder ratio, silica fume content, steel fiber content, coarse aggregate content and curing condition were studied. The influence rules of these factors on the compressive strength of UHPC were given and the reasons were analyzed. In addition, according to the test results, the optimum steel fiber content and coarse aggregate content were given.
  • 覃维祖, 曹峰. 一种超高性能混凝土:活性粉末混凝土[J]. 工业建筑, 1999,29(4):18-20.
    CHEYREZY M R P. Composition of Reactive Powder Concretes[J]. Cement and Concrete Research, 1995,25(7):1501-1511.
    朋改非, 杨娟, 高育欣, 等. 含粗骨料的超高性能混凝土抗压强度的影响因素[J]. 华北水利水电学院学报, 2012(6):5-9.
    阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9):36-41.
    冯乃谦. 高性能混凝土与超高性能混凝土的发展和应用[J]. 施工技术, 2009,38(4):1-6.
    孙世国, 鲁艳朋. 超高性能混凝土国内外研究进展[J]. 科学技术与工程, 2018(20):184-199.
    中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55-2011[S]. 北京:中国建筑工业出版社,2011.
    HIREMATH P N, YARAGAL S C. Influence of Mixing Method, Speed and Duration on the Fresh and Hardened Properties of Reactive Powder Concrete[J]. Construction and Building Materials, 2017,141:271-288.
    吴炎海, 何雁斌. 活性粉末混凝土(RPC200)的配制试验研究[J]. 中国公路学报, 2003(4):44-49.
    WANG C, YANG C, LIU F, et al. Preparation of Ultra-High Performance Concrete with Common Technology and Materials[J]. Cement and Concrete Composites, 2012,34(4):538-544.
    HELMI M, HALL M R, Stevens L A, et al. Effects of High-Pressure/Temperature Curing on Reactive Powder Concrete Microstructure Formation[J]. Construction and Building Materials, 2016,105:554-562.
    鞠彦忠, 邵安乐, 王德弘. 活性粉末混凝土抗压强度影响因素研究[J]. 混凝土, 2017(1):130-132.
    ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Construction and Building Materials, 2017,(131):758-766.
    崔巩, 刘建忠, 姚婷, 等. 基于Dinger-Funk方程的活性粉末混凝土配合比设计[J]. 东南大学学报(自然科学版), 2010,40(增刊2):15-19.
    SOLIMAN N A, TAGNIT-HAMOU A. Partial Substitution of Silica Fume with Fine Glass Powder in UHPC:Filling the Micro Gap[J]. Construction and Building Materials, 2017,139:374-383.
    陶毅, 张海镇, 王秋维, 等. 基于最紧密堆积理论制备活性粉末混凝土的试验研究[J]. 云南大学学报(自然科学版), 2017(1):107-114.
    ZDEB T. Effect of Vacuum Mixing and Curing Conditions on Mechanical Properties and Porosity of Reactive Powder Concretes[J]. Construction and Building Materials, 2019,209:326-339.
    徐海宾, 邓宗才. 新型超高性能混凝土力学性能试验研究[J]. 混凝土, 2014(4):20-23.
    程俊, 刘加平, 刘建忠, 等. 含粗骨料超高性能混凝土力学性能研究及机理分析[J]. 材料导报, 2017(23):115-119.
    黄政宇. 含粗骨料超高性能混凝土力学性能研究[J]. 湖南大学学报(自然科学版), 2018(3):47-54.
    朋改非, 杨娟, 高育欣, 等. 含粗骨料的超高性能混凝土抗压强度的影响因素[J]. 华北水利水电学院学报, 2012(6):5-9.
    XU L, LU Q, CHI Y, et al. Axial Compressive Performance of UHPC FIlled Steel Tube Stub Columns Containing Steel-Polypropylene Hybrid Fiber[J]. Construction and Building Materials, 2019,(204):754-767.
    XU L, WU F, CHI Y, et al. Effects of Coarse Aggregate and Steel Fibre Contents on Mechanical Properties of High Performance Concrete[J]. Construction and Building Materials, 2019,206:97-110.
    王苏岩, 籍凤秋. 配合比因素对RPC强度影响正交试验研究[J]. 低温建筑技术, 2009(1):9-11.
    刘红彬, 鞠杨, 孙华飞,等. 硅灰掺量对活性粉末混凝土力学性能的影响[J]. 工业建筑, 2015,45(4):132-135.
    薛刚, 张夏. 钢纤维掺量对活性粉末混凝土基本力学性能的影响[J]. 硅酸盐通报, 2018,37(3):934-938.
    陈浩宇, 王杰, 李俊毅, 等. 钢纤维对活性粉末混凝土性能的影响[J]. 中国港湾建设, 2013(3):32-36.
    高育欣, 沈锐, 程宝军, 等. 钢纤维搭配对超高性能混凝土拌合物性能的影响[J]. 混凝土与水泥制品, 2019(1):55-60.
    雷超, 方从启, 纪腾飞, 等. 钢纤维活性粉末混凝土流动性影响因素研究[J]. 新型建筑材料, 2017(7):130-132.
    中华人民共和国国家质量监督检验检疫总局.活性粉末混凝土:GB/T 31387-2015[S]. 北京:中国质检出版社,2015.
    SOBUZ H R, VISINTIN P, MOHAMED A M S, et al. Manu-facturing ULtra-High Performance Concrete Utilising Conventional Materials and Production Methods[J]. Construction and Building Materials, 2016,111:251-261.
    刘数华, 阎培渝, 冯建文. 超高强混凝土RPC强度的尺寸效应[J]. 公路, 2011(3):123-127.
    ZDEB T. An Analysis of the Steam Curing and Autoclaving Process Parameters for Reactive Powder Concretes[J]. Construction and Building Materials, 2017,131:758-766.
    BELLJAMIN G, MARSHALL D. Cylinder or Cube:Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete[J]. ACI Materials Journal, 2008,105(6):603-609.
    AN M Z L Y. Size Effect on Compressive Strength of Reactive Powder Concrete[J]. Journal of China University of Mining and Technology, 2008(2):279-282.
    金凌志, 李月霞, 付强. 不同掺合料掺量的活性粉末混凝土抗压强度试验[J]. 河南科技大学学报(自然科学版), 2014,35(5):55-62.
    廖娟, 张涛, 戢文占,等. 养护制度对活性粉末混凝土(RPC)强度及韧性的影响[J]. 四川建筑科学研究, 2013,39(6):257-260.
    万超杰, 龙佩恒. 活性粉末混凝土的强度影响因素试验研究[J]. 北京建筑大学学报, 2015(1):38-41.
    高辉. 活性粉末混凝土配合比优化试验研究[J]. 粉煤灰综合利用, 2018(4):35-38.
    周锡玲, 谢友均, 张胜. 湿热养护制度对RPC200强度影响的研究[J]. 施工技术, 2007(4):49-51.
  • Relative Articles

    [1]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [2]LIU Bin, WANG Husheng, YANG Jiaqi, FENG Peng, ZHANG Qirui, SU Dengyang, WANG Cheng. Experimental Study on Strengthening RC Beams with Mid-Span Supporting Prestressed Carbon Fiber Plates[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 21-28. doi: 10.13204/j.gyjzG22083007
    [3]YAO Xingyou. THE BUCKLING PROPERTY AND EFFECTIVE WIDTH CALCULATION METHOD OF THIN PLATES WITH RECTANGULAR HOLES SUBJECTED TO LINEARLY VARYING PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 112-120. doi: 10.13204/j.gyjzG21062001
    [4]ZENG Bin, SHANG Renjie, CUI Cui, XU Qing, XU Man. STABILITY ANLYSIS OF STEEL COMPRESSION BAR REINFORCED WITH OUTER SLEEVE OR RIGID PRESTRESSED STRUT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 133-137. doi: 10.13204/j.gyjzG20081014
    [5]CHEN Hua, CHEN Yaojia, XIE Bin, DENG Langni. STUDY OF BENDING BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH NEAR-SURFACE-MOUNTED PRESTRESSED CFRP RODS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 168-173. doi: 10.13204/j.gyjz201908210007
    [6]Tong Genshu, Tao Wendeng, Zhang Lei. ELASTIC BUCKLING OF SIMPLY SUPPORTED RECTANGULAR PLATES UNDER BENDING,SHEAR AND BEARING STRESSES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 22-27. doi: 10.13204/j.gyjz201304005
    [7]Chen Lei, J.Michael Rotter, Peng Yiliang, Yang Guang. BUCKLING BEHAVIOUR OF SHELLS OF STEPPED WALL CYLINDERS UNDER UNIFORM EXTERNAL PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 125-132. doi: 10.13204/j.gyjz201308027
    [8]Tong Gengshu, Zhu Xinghai, Pi Yonglin. BUCKLING ANALYSIS OF HORIZONTALLY ELASTICALLY-SUPPORTED ARCHES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 28-33,41. doi: 10.13204/j.gyjz201304006
    [9]Jiao Youjin, Wang Hongtao, Yang Caiqian, Wu Zhishen. STUDY ON THE FLEXURAL BEHAVIOR OF PRE-STRESSED C/BFRP-CONCRETE COMPOSITE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 23-26. doi: 10.13204/j.gyjz201306006
    [10]Xiong Xueyu, Li Yang, Wang Meihua. NON-LINEAR ANALYSIS OF PRESTRESSED STEEL-CONCRETE COMPOSITE FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 34-38. doi: 10.13204/j.gyjz201112008
    [11]Wang Dengfeng, Cao Pingzhou. INVESTIGATION INTO THE STABILITY OF LARGE SCALE THIN-WALLED STEEL CYLINDRICAL SHELLS UNDER SEVERE DISASTER OF ICE AND SNOW[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 120-125. doi: 10.13204/j.gyjz200910027
    [12]Wu Zhuanqin, Zeng Zhaobo, Shang Renjie, Liu Jingliang. EXPERIMENTAL STUDY ON FRICTION COEFFICIENT OF RETARD-BONDED PRESTRESSING STRAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 20-23. doi: 10.13204/j.gyjz200811006
    [13]Fan Yunyun, Wu Zhuanqin, Zhou Jianfeng, Gong Xisheng. STUDY ON ADHESIVE MATERIALS FOR RETARD-BONDED PRESTRESSING STRAND[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 6-8,16. doi: 10.13204/j.gyjz200811002
    [14]Tu Yongming, LüZhitao, Zhang Jiwen, Qian Yang. THE EXPERIMENTAL STUDY ON THE FOUR TYPES OF FRP TENDON ANCHORAGE SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 38-41. doi: 10.13204/j.gyjz20081011
    [15]Wang Chunwu. ANALYSIS OF COMPATIBILITY TORSION FOR PRESTRESSED CONCRETE EDGE GIRDERS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(10): 42-45. doi: 10.13204/j.gyjz200710012
    [16]Zhang Ke, Ye Lieping, Yue Qingrui. ANALYSIS OF MAXIMUM TENSIONED PRESTRESS AND INTERFACIAL BOND STRESS OF PRESTRESSED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 96-99. doi: 10.13204/j.gyjz200707028
    [17]Wang Cheng-qi. EFFECTOF STEEL FIBER TYPE ON CONCRETE BENDING PROPERTIES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 74-76,114. doi: 10.13204/j.gyjz200711020
    [18]Lian Jie, Yang Yongxin, Yang Meng, Zhao Yan. EXPERIMENTAL RESEARCH ON THE MECHANICAL BEHAVIOR OF CHOPPED BASALT FIBER REINFORCED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 8-10. doi: 10.13204/j.gyjz200706003
    [19]Song Wei, Yuan Yong. PRACTICAL ANALYSIS OF FLEXURAL STIFFNESS OF PRESTRESS CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 30-33. doi: 10.13204/j.gyjz200411009
    [20]Jiao Chujie, Sun Wei, Lai Jianzhong, Jiang Jinyang. MECHANICAL PROPERTIES OF ECOLOGICAL REACTIVE POWDER CONCRETE UNDER UNIAXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 60-62. doi: 10.13204/j.gyjz200401017
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.1 %FULLTEXT: 33.1 %META: 62.8 %META: 62.8 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.2 %其他: 17.2 %上海: 9.2 %上海: 9.2 %东莞: 0.4 %东莞: 0.4 %保定: 0.8 %保定: 0.8 %北京: 4.2 %北京: 4.2 %南京: 1.3 %南京: 1.3 %南通: 0.4 %南通: 0.4 %合肥: 1.7 %合肥: 1.7 %呼和浩特: 0.4 %呼和浩特: 0.4 %太原: 0.4 %太原: 0.4 %宁波: 1.3 %宁波: 1.3 %宣城: 0.4 %宣城: 0.4 %常德: 1.7 %常德: 1.7 %张家口: 1.7 %张家口: 1.7 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %无锡: 0.8 %无锡: 0.8 %昆明: 0.8 %昆明: 0.8 %晋城: 0.4 %晋城: 0.4 %杭州: 1.3 %杭州: 1.3 %武汉: 1.3 %武汉: 1.3 %洛阳: 0.8 %洛阳: 0.8 %济南: 0.4 %济南: 0.4 %湖州: 0.8 %湖州: 0.8 %漯河: 0.8 %漯河: 0.8 %福州: 0.4 %福州: 0.4 %红河: 0.4 %红河: 0.4 %芒廷维尤: 24.7 %芒廷维尤: 24.7 %芝加哥: 0.8 %芝加哥: 0.8 %蚌埠: 2.5 %蚌埠: 2.5 %衢州: 0.4 %衢州: 0.4 %西宁: 15.5 %西宁: 15.5 %西安: 1.3 %西安: 1.3 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.7 %运城: 1.7 %郑州: 0.8 %郑州: 0.8 %长沙: 0.4 %长沙: 0.4 %其他上海东莞保定北京南京南通合肥呼和浩特太原宁波宣城常德张家口成都扬州无锡昆明晋城杭州武汉洛阳济南湖州漯河福州红河芒廷维尤芝加哥蚌埠衢州西宁西安贵阳运城郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (367) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return