Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 50 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
ZHENG, Liang, QIN, Cheng, ZHANG, Dapeng. RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 154-161. doi: 10.13204/j.gyjz202001025
Citation: ZHENG, Liang, QIN, Cheng, ZHANG, Dapeng. RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 154-161. doi: 10.13204/j.gyjz202001025

RESEARCH ON STRUCTURAL INFLUENCING COEFFICIENT OF STEEL PLATE SHEAR WALL

doi: 10.13204/j.gyjz202001025
  • Received Date: 2019-07-20
  • Technical Specificatiors for Steel Plate Shear Walls(JGJ/T 380—2015) do not involve specific values for the structural influence coefficient and the displacement amplification factor of the steel plate shear wall. According to Code for Seismic Design of Buildings(GB 50011—2010), the steel plate shear wall structures of the A and B groups with 4, 8, and 12 layers were designed. the displacement amplification factor and the structural influence coefficient of the single frame plane and the integrall steel shear wall structure were obtained under uniform load and inverted triangle load with Pushover analytical method by Midas/Gen. It was shown that: the structural influence coefficient and the displacement amplification factor of the single frame and the integral steel plate shear wall structure in the uniform load mode were generally larger than that in inverted triangle loading mode. The structural influence coefficient and the displacement amplification factor of the single frame shear wall structure were larger than the corresponding coefficients of the integral steel shear wall structure. The coefficient and the factor calculated by the single frame structure couldn’t replace the integral steel shear wall structure calculated coefficient. It was suggested that the structural influence coefficient and displacement amplification factor of the steel plate shear wall structure with no more than 12 layers should be 3.25 and 6.45.
  • loading
  • 聂建国,朱力,樊健生,等.钢板剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(1):61-69.
    王萌,杨维国.薄钢板剪力墙滞回行为研究[J].建筑结构学报,2015,36(1):68-77.
    聂建国,樊健生,黄远,等.钢板剪力墙的试验研究[J].建筑结构学报,2010,31(9):1-8.
    赵秋红,李楠,孙军浩.波纹钢板剪力墙结构的抗侧性能分析[J].天津大学学报(自然科学与工程技术版),2016,49(1):152-160.
    孙国华,顾强,何若全,等.钢板剪力墙结构的性态指标及损伤评估[J].土木工程学报,2013,46(4):46-56.
    谭平,林裕辉,周福霖,等.开菱形孔钢板剪力墙受力性能研究[J].建筑结构学报,2016,37(9):117-125.
    VIAN D, MICHEL B, TSAI K C, et al.Special Perforated Steel Plate Shear Walls with Reduced Beam Section Anchor Beams. I:Experimental Investigation[J]. Journal of Structural Engineering, 2009, 135(3):211-220.
    CHENA S J, CHYUAN J H. Experimental Study of Low-Yield-Point Steel Plate Shear Wall Under in-Plane Load[J]. Journal of Constructional Steel Research, 2011, 67(6):977-985.
    CHENA Shengjin, CHYUAN Jhang. Cyclic Behavior of Low Yield Point Steel Shear Walls[J]. Thin-Walled Structures,2015, 44(7):730-738.
    王萌,杨维国.不同改进形式钢板剪力墙滞回性能研究[J].工程力学,2016,33(8):110-121.
    金天德,叶再利.箱形钢板剪力墙稳定性分析[J].建筑结构学报,2014,35(9):40-47.
    周琦.栓焊连接钢框架-钢板剪力墙结构抗震性能试验研究和理论分析[D].西安:西安建筑科技大学, 2014.
    李岩.钢框架-钢板剪力墙结构体系的试验研究与理论分析[D].西安:西安建筑科技大学, 2014.
    刘高波.半刚性连接钢框架-钢板剪力墙结构的结构影响系数和位移放大系数研究[D].西安:西安建筑科技大学, 2014.
    童根树.与抗震设计有关的结构和构件的分类及结构影响系数[J].建筑科学与工程学报,2007,24(3):65-75.
    Federal Emergency Management Agency. NEHRP Recommended Provisions for New Buildings and Other Structures:FEMA 302[S]. Washington DC:Building Seismic-Safety Council, 1998.
    ECCS. Design Provisions for Earthquake Resistance of Structure:Part 1:General Rules,Seismic Actions and Rules for Buildings:EN 1998-1:2000[S]. Brussels, Belgium:Euro Codes Committee for Standardization,2000.
    IAEE. Regulations for Seismic Design:A World List:IAEE-1996[S]. Tokyo:International Association for Earthquake Engineering, 1996.
    Building and Civil Engineering Board.Code of Practice for General Structural Design and Design Loads for Buildings:NZS 4203:1992[S]. Wellington, New Zealand:Standards New Zealand, 1992.
    中国工程建设标准化协会.建筑工程抗震性态设计通则(试用):CECS 160:2004[S].北京:中国计划出版社, 2004.
    中华人民共和国住房和城乡建筑部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社, 2010.
    中华人民共和国住房和城乡建设部.钢板剪力墙技术规程:JGJ/T 380-2015[S].北京:中国建筑工业出版社, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return