Citation: | CAI Jianguo, ZHANG Qian, DU Caixia, ZUO Zibo, FENG Jian. A STATE-OF-THE-ART REVIEW OF 3D CONCRETE PRINTING TECHNIQUE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 1-8. doi: 10.13204/j.gyjz201909110005 |
[1] |
丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015,32(3):1-10.
|
[2] |
苏有文, 李超飞, 杨婷惠, 等. 3D打印混凝土技术的建筑工程应用研究[J]. 建筑技术, 2017,48(1):98-100.
|
[3] |
ZUO Z, GONG J, HUANG Y, et al. Experimental Research on Transition from Scale 3D Printing to Full-Size Printing in Construction[J]. Construction and Building Materials, 2019,208:350-360.
|
[4] |
WANGLER T, ROUSSEL N, BOS F P, et al. Digital Concrete:A Review[J]. Cement and Concrete Research, 2019,123. DOI: 10.1016/j.cemconres.2019.105780.
|
[5] |
KHOSHNEVIS B. Automated Construction by Contour Crafting:Related Robotics and Information Technologies[J]. Automation in Construction, 2004,13(1):5-19.
|
[6] |
KHOSHNEVIS B, HWANG D, YAO K, et al. Mega-Scale Fabrication by Contour Crafting[J]. International Journal of Industrial and Systems Engineering, 2006,1(3):301-320.
|
[7] |
BUSWELL R A, THORPE A, SOAR R C, et al. Design, Data and Process Issues for Mega-Scale Rapid Manufacturing Machines Used for Construction[J]. Automation in Construction, 2008,17(8):923-929.
|
[8] |
LIM S, LE T, WEBSTER J, et al. Fabricating Construction Components Using Layered Manufacturing Technology:Global Innovation in Construction Conference[C]//Global Innovation in Construction Conference. Loughborough:2009:512-520.
|
[9] |
LIM S, BUSWELL R A, LE T T, et al. Developments in Construction-Scale Additive Manufacturing Processes[J]. Automation in Construction, 2012,21:262-268.
|
[10] |
WOLFS R, BOS F P, SALET T. Correlation Between Destructive Compression Tests and Non-Destructive Ultrasonic Measurements on Early Age 3D Printed Concrete[J]. Construction and Building Materials, 2018,181:447-454.
|
[11] |
PAUL S C, van ZIJL G P A G, TAN M J, et al. A Review of 3D Concrete Printing Systems and Materials Properties:Current Status and Future Research Prospects[J]. Rapid Prototyping Journal, 2018,24(4):784-798.
|
[12] |
李旋. 3D打印混凝土配合比设计及其基本性能研究[D]. 武汉:华中科技大学, 2014.
|
[13] |
刘晓瑜, 杨立荣, 宋扬. 3D打印建筑用水泥基材料的研究进展[J]. 华北理工大学学报(自然科学版), 2018,40(3
):52-56.
|
[14] |
SHAO Y, SHAH S P. Mechanical Properties of PVA Fiber Reinforced Cement Composites Fabricated by Extrusion Processing[J]. ACI Materials Journal, 1997,94(6):555-564.
|
[15] |
MECHTCHERINE V, NERELLA V N, KASTEN K. Testing Pumpability of Concrete Using Sliding Pipe Rheometer[J]. Construction and Building Materials, 2014,53:312-323.
|
[16] |
CHOI M S, KIM Y J, KIM J K. Prediction of Concrete Pumping Using Various Rheological Models[J]. International Journal of Concrete Structures and Materials, 2014,8(4):269-278.
|
[17] |
KWON S H, JANG K P, KIM J H, et al. State of the Art on Prediction of Concrete Pumping[J]. International Journal of Concrete Structures and Materials, 2016,10(3):75-85.
|
[18] |
LE T T, AUSTIN S A, LIM S, et al. Mix Design and Fresh Properties for High-Performance Printing Concrete[J]. Materials and Structures, 2012,45(8):1221-1232.
|
[19] |
MALAEB Z, HACHEM H, TOURBAH A, et al. 3D Concrete Printing:Machine and Mix Design[J]. International Journal of Civil Engineering, 2015,6(6):14-22.
|
[20] |
CHEN Y, STRUBLE L J, PAULINO G H. Extrudability of Cement-Based Materials[J]. American Ceramic Society Bulletin, 2006,85(6):9101-9104.
|
[21] |
PERROT A, RANGEARD D, MÉLINGE Y, et al. Extrusion Criterion for Firm Cement-Based Materials[J]. Applied Rheology, 2009,19(5):53041-53042.
|
[22] |
TOUTOU Z, ROUSSEL N, LANOS C. The Squeezing Test:A Tool to Identify Firm Cement-Based Material's Rheological Behaviour and Evaluate their Extrusion Ability[J]. Cement and Concrete Research, 2005,35(10):1891-1899.
|
[23] |
NERELLA V N, MECHTCHERINE V. Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D)[J].3D Concrete Printing Technology, 2019:333-347.
|
[24] |
FIGUEIREDO S C, RODRÍGUEZ C R, AHMED Z Y, et al. An Approach to Develop Printable Strain Hardening Cementitious Composites[J]. Materials & Design, 2019,169. DOI: 10.1016/j.matdes.2019.107651.
|
[25] |
KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious Materials for Construction-Scale 3D Printing:Laboratory Testing of Fresh Printing Mixture[J]. Construction and Building Materials, 2017,145:639-647.
|
[26] |
China View TV. Giant Chinese 3D Printer Builds 10 Houses in Just 1 Day[EB/OL]. (2014-04-29)[2019-09-06]. https://www.rt.com/news/155220-3d-printer-houses-china/.
|
[27] |
PERROT A, RANGEARD D, PIERRE A. Structural Built-Up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques[J]. Materials and Structures, 2016,49(4):1213-1220.
|
[28] |
LE T T, AUSTIN S A, LIM S, et al. Hardened Properties of High-Performance Printing Concrete[J]. Cement and Concrete Research, 2012,42(3):558-566.
|
[29] |
FENG P, MENG X, CHEN J, et al. Mechanical Properties of Structures 3D Printed with Cementitious Powders[J]. Construction and Building Materials, 2015,93:486-497.
|
[30] |
NERELLA V N, HEMPEL S, MECHTCHERINE V. Micro-and Macroscopic Investigations on the Interface Between Layers of 3D-Printed Cementitious Elements[C]//Proceedings of the International Conference on Advances in Construction Materials and Systems. Chennai:2017.
|
[31] |
NERELLA V N, KRAUSE M, NÄTHER M, et al. Studying Printability of Fresh Concrete for Formwork Free Concrete On-Site 3D Printing Technology (CONPrint3D)[C]//25th Conference on Rheology of Building Materials. Regensburg:2016.
|
[32] |
KIM K, PARK S, KIM W, et al. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed Before Initial Setting Using 3D Printing Technology[J]. Materials, 2017,10(12):1349.
|
[33] |
BOS F P, BOSCO E, SALET T. Ductility of 3D Printed Concrete Reinforced with Short Straight Steel Fibers[J]. Virtual and Physical Prototyping, 2019,14(2):160-174.
|
[34] |
WOLFS R, BOS F P, SALET T. Hardened Properties of 3D Printed Concrete:The Influence of Process Parameters on Interlayer Adhesion[J]. Cement and Concrete Research, 2019,119:132-140.
|
[35] |
INGAGLIO J, FOX J, NAITO C J, et al. Material Characteristics of Binder Jet 3D Printed Hydrated CSA Cement with the Addition of Fine Aggregates[J]. Construction and Building Materials, 2019,206:494-503.
|
[36] |
FENG P, MENG X, ZHANG H. Mechanical Behavior of FRP Sheets Reinforced 3D Elements Printed with Cementitious Materials[J]. Composite Structures, 2015,134:331-342.
|
[37] |
BOS F P, BOSCO E, SALET T. Ductility of 3D Printed Concrete Reinforced with Short Straight Steel Fibers[J]. Virtual and Physical Prototyping, 2019,14(2):160-174.
|
[38] |
HAMBACH M, VOLKMER D. Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste[J]. Cement and Concrete Composites, 2017,79:62-70.
|
[39] |
DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D Printing with Concrete:Technical, Economic and Environmental Potentials[J]. Cement and Concrete Research, 2018,112:25-36.
|
[40] |
ASPRONE D, MENNA C, BOS F P, et al. Rethinking Reinforcement for Digital Fabrication with Concrete[J]. Cement and Concrete Research, 2018,112:111-121.
|
[41] |
KRASSENSTEIN E. Architect Plans to 3D Print a 2-Story Home in Minnesota Using a Homemade Cement Printer[EB/OL]. (2014-04-22)[2019-09-05]. https://3dprint.com/2471/3d-printed-home-in-minnesota/.
|
[42] |
SEVENSON B. Shanghai Based WinSun 3D Prints 6-Story Apartment Building and an Incredible Home[EB/OL]. (2015-01-18)[2019-09-05]. https://3dprint.com/38144/3d-printed-apartment-building/.
|
[43] |
MOLITCH-HOU M. 400-Square-Meter Villa 3D Printed Onsite in Just 45 Days[EB/OL]. (2016-01-06)[2019-09-05]. https://www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/12415/400-Square-Meter-Villa-3D-Printed-Onsite-in-Just-45-Days.aspx.
|
[44] |
ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction and Building Materials, 2018,165:218-231.
|
[45] |
MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-Printed Steel Reinforcement for Digital Concrete Construction-Manufacture, Mechanical Properties and Bond Behaviour[J]. Construction and Building Materials, 2018,179:125-137.
|
[46] |
LIM J H, PANDA B, PHAM Q. Improving Flexural Characteristics of 3D Printed Geopolymer Composites with In-Process Steel Cable Reinforcement[J]. Construction and Building Materials, 2018,178:32-41.
|
[47] |
PAUL S C, van ZIJL G P, TAN M J, et al. A Review of 3D Concrete Printing Systems and Materials Properties:Current Status and Future Research Prospects[J]. Rapid Prototyping Journal, 2018,24(4):784-798.
|
[48] |
SALET T A, AHMED Z Y, BOS F P, et al. Design of a 3D Printed Concrete Bridge by Testing[J]. Virtual and Physical Prototyping, 2018,13(3):222-236.
|
[49] |
SAUNDERS S. 3D Printed Concrete Bridge in the Netherlands Officially Open to Cyclists[EB/OL]. (2017-10-18)[2019-09-06]. https://3dprint.com/191375/3d-printed-concrete-bridge-open/.
|
[50] |
葛杰, 白洁, 杨燕, 等. 3D打印配筋砌体墙承载力试验研究[J]. 建筑材料学报, 2020,23(2):180-186.
|
[51] |
葛杰, 白洁, 杨燕, 等. 3D打印结构柱偏压性能试验研究[J]. 建筑材料学报, 2019,22(3):424-430.
|
[52] |
JEWETT J L, CARSTENSEN J V. Topology-Optimized Design, Construction and Experimental Evaluation of Concrete Beams[J]. Automation in Construction, 2019,102:59-67.
|
[53] |
ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction and Building Materials, 2018,165:218-231.
|
[54] |
KRASSENSTEIN E. World's First 3D Printed Castle is Complete-Andrey Rudenko Now to Print a Full-Size House[EB/OL]. (2014-08-25)[2019-09-07]. https://3dprint.com/12933/3d-printed-castle-complete/.
|
[55] |
V. C. Concrete Choreography are 9 Unique 3D Printed Columns[EB/OL]. (2019-07-26)[2019-09-07]. https://www.3dnatives.com/en/3d-printed-columns-260720195/.
|