Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Zhaofeng, ZHANG Rongling, MA Lina, ALAN Kwan, NING Guixia, LI Zhiyang. EXPERIMENTAL RESEARCH AND NUMERICAL ANALYSIS OF THE BEARING CAPACITY OF CONCRETE-FILLED STEEL TUBE (CFST) WITH DEFECTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 138-144,53. doi: 10.13204/j.gyjzG201908130009
Citation: LIN Shuchao, FAN Guangli, KANG Jinjun, ZHOU Yijun. OPTIMIZATION DESIGN AND FEM VERIFICATION OF VARIABLE CURVATURE-FRICTION PENDULUM SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 128-135. doi: 10.13204/j.gyjz201906030005

OPTIMIZATION DESIGN AND FEM VERIFICATION OF VARIABLE CURVATURE-FRICTION PENDULUM SYSTEMS

doi: 10.13204/j.gyjz201906030005
  • Received Date: 2020-08-21
    Available Online: 2021-07-17
  • In order to meet the isolation demand of large-scale building structures under different earthquake action and long-period ground motion in particular, a new bidirectional variable curvature-friction pendulum bearing (BD VCFPB) was proposed, and designed in detail according to the basic principle of friction-pendulum bearing. Then, the influence of friction coefficients, influence coefficients of curvature, isolation periods and the stress states of polytetrafluoroethylene (PTFE) plates on the properties of the bearings were further studied. Finally, a series of numerical simulations was conducted on the bearing by ABAQUS. The results showed that there was no separation between PTFE plates and sliding surfaces when the length of the contact area for sliders 2r was smaller; the PTFE plates were separated from the sliding surfaces when 2r was larger. The hysteretic curves of the bearings were a little different from the ones of the theoretical model at the design displacement. In the process of the slider sliding from the position of design displacement to the position of equilibrium, the hysteretic curves of the bearings on the convex arc segment were slightly different from the ones of the theoretical model, and the larger the 2r, the greater the difference. But as a whole, the hysteretic curves of the horizontal force and displacement for the bearings agreed well with the ones of the theoretical model.
  • ZAYAS V A, LOW S S, MAHIN S A. The FPS Earthquake Resisting System:UCB/EERC-87/01[R]. Berkeley:University of California at Berkeley, 1987.
    ZAYAS V A, LOW S S, MAHIN S A. A Simple Pendulum Technique for Achieving Seismic Isolation[J]. Earthquake Spectra, 2012, 6(2):317-333.
    龚健, 周云. 摩擦摆隔震技术研究和应用的回顾与前瞻(Ⅰ):摩擦摆隔震支座的类型与性能[J]. 工程抗震与加固改造, 2010, 32(3):1-10.
    周云, 龚健. 摩擦摆隔震技术研究和应用的回顾与前瞻(Ⅱ):摩擦摆隔震结构的性能分析及摩擦摆隔震技术的应用[J]. 工程抗震与加固改造, 2010, 32(4):1-19.
    PRANESH M, SINHA R. VFPI:An Isolation Device for Aseimic Design[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(5):603-627.
    PRANESH M, SINHA R. Aseismic Design of Structure Equipment Systems Using Variable Frequency Pendulum Isolator[J]. Nuclear Engineering and Design, 2004, 231(2):239-139.
    TSAI C S, CHIANG T C, CHEN B J. Finite Element Formulations and Theoretical Study for Variable Curvature Friction Pendulum System[J]. Engineering Structures, 2003, 25(14):1719-1730.
    LU L Y, WANG J, HSU C C. Sliding Frequency Bearings for Near-Fault Ground Motions[C]//4th International Conference on Earthquake Engineering. Taipei:2006.
    LU L Y, LEE T Y, YEH S W. Theory and Experimental Study for Sliding Isolators with Variable Curvature[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(14):1609-1627.
    周云, 龚健, 邓雪松. 变曲率摩擦复摆隔震支座的简化分析与数值仿真[J]. 工程力学, 2012, 29(7):163-171.
    西安中交土木科技有限公司. 变曲率自适应摩擦摆式减隔震支座:ZL201310220186.7[P]. 2015-06-17.
    MARTÍ J, CRESPO M, MARTÍNEZ F. Seismic Isolation of Liquefied Natural Gas Tanks:A Comparative Assessment[J]. Seismic Isolation & Protective Systems, 2010, 1(1):125-140.
  • Relative Articles

    [1]ZHOU Xuhong, LUO Yintao, WANG Wenling, WANG Yuhang, LU Yao. Optimizational Analysis on Structural Parameters and Study on Practical Deformation Analysis Methods for High-Rise Pile Cap Foundations of Offshore Wind Turbines[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 1-12. doi: 10.13204/j.gyjzG23022210
    [2]PENG Lingyun, LIU Wen, SUN Rui. The Dynamic Model of Distribution Parameters for a Frame Structure by Base Isolation and the Regularity of Earthquake Responses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 52-58,168. doi: 10.13204/j.gyjzG21031704
    [3]XIONG Ye, DING Yang, CHA Lyuying, CHEN Zizi, LIU Yangwu. Dynamic Characteristics of Axial Flow Compressor Foundations Considering Interaction of Foundation, Pile Foundations and Superstructures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 150-155,149. doi: 10.13204/j.gyjzG21052007
    [4]LI Shu'an, ZHANG Junhua, TIAN Shizhen, WU Jianqun, CHANG Jingcheng, WANG Yukui. RESEARCH ON BEARING CHARACTERISTICS OF GROUP PILE FOUNDATIONS CONSIDERING PILE-SOIL-CAP INTERACTION IN STRATIFIED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 65-71. doi: 10.13204/j.gyjzG201908210002
    [5]LüFanren, Shao Hongcai, Jin Yaohua. EXPERIMENTAL STUDY ON BEARING CAPACITY COMPARISON BETWEEN SYMMETRIC DOUBLE GROUP PILES UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 102-105. doi: 10.13204/j.gyjz2011205019
    [6]Nie Weidong, Lu Jianfei. INFLUENCE OF DIFFERENT COMPATIBILITY CONDITIONS BETWEEN PILE AND SOIL ON DYNAMIC RESPONSE OF A SINGLE PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 55-59. doi: 10.13204/j.gyjz200708015
    [7]Cao Ming, Chen Longzhu, Chen Shengli, Zheng Jianguo. AN INTEGRAL EQUATION APPROACH AND PARAMETRIC ANALYSIS OF A FOUNDATION WITH LONG-SHORT-PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 48-52. doi: 10.13204/j.gyjz200705013
    [8]Zheng Gang, Zhang Hui-dong, Liu Shuang-ju. ANALYSIS OF INTERACTION OF PILES AND SOIL ABOUT PILED CAP (FOUNDATION) WITH DIFFERENT CONNECTION BETWEEN PILE TOP AND CAP (FOUNDATION)[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 65-69,5. doi: 10.13204/j.gyjz200606019
    [9]Chen Mingzhong, Zhou Chenghui. ANALYSIS OF OPTIMUM DESIGN FOR PILED RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 36-39. doi: 10.13204/j.gyjz200407010
  • Cited by

    Periodical cited type(6)

    1. 户梦瑶,吉云鹏,胡红松,高毅超. 环向均匀脱空对方钢管混凝土柱轴压受力性能的影响. 实验力学. 2025(01): 80-90 .
    2. 董军,葛世超,李国华,向学建,刘殿元. 核心砼缺陷位置对钢管混凝土承载力致损机制研究. 兰州理工大学学报. 2024(06): 107-112 .
    3. 王红. 基于正交试验设计的带缺陷钢管混凝土轴压承载力分析. 施工技术(中英文). 2023(04): 111-116 .
    4. 杨世胜,高岳,周继波. 填充材料对受拉弦杆构件的极限性能影响分析. 科技创新与应用. 2023(34): 70-76 .
    5. 刘龙刚,杨瑞娟. 基于有限元分析的受压构件计算与验证. 自动化与仪器仪表. 2022(10): 9-13+17 .
    6. 杨磊,薛晓宏,姜继果,黄正业,姜子麒. 矩形钢管混凝土柱初始缺陷随机有限元分析. 施工技术(中英文). 2022(22): 103-108+112 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 85.1 %META: 85.1 %PDF: 6.8 %PDF: 6.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %六安: 2.7 %六安: 2.7 %北京: 13.5 %北京: 13.5 %太原: 1.4 %太原: 1.4 %广州: 2.7 %广州: 2.7 %恩施土家族苗族自治州: 1.4 %恩施土家族苗族自治州: 1.4 %晋城: 1.4 %晋城: 1.4 %朝阳: 1.4 %朝阳: 1.4 %杭州: 1.4 %杭州: 1.4 %石家庄: 4.1 %石家庄: 4.1 %芒廷维尤: 23.0 %芒廷维尤: 23.0 %芝加哥: 1.4 %芝加哥: 1.4 %衢州: 1.4 %衢州: 1.4 %西宁: 6.8 %西宁: 6.8 %西安: 1.4 %西安: 1.4 %贵阳: 2.7 %贵阳: 2.7 %运城: 14.9 %运城: 14.9 %邯郸: 1.4 %邯郸: 1.4 %郑州: 2.7 %郑州: 2.7 %重庆: 1.4 %重庆: 1.4 %长沙: 1.4 %长沙: 1.4 %其他六安北京太原广州恩施土家族苗族自治州晋城朝阳杭州石家庄芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(1) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return