Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Zhaofeng, ZHANG Rongling, MA Lina, ALAN Kwan, NING Guixia, LI Zhiyang. EXPERIMENTAL RESEARCH AND NUMERICAL ANALYSIS OF THE BEARING CAPACITY OF CONCRETE-FILLED STEEL TUBE (CFST) WITH DEFECTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 138-144,53. doi: 10.13204/j.gyjzG201908130009
Citation: LAI Xiuying, CHEN Zhaoyu, ZHENG Juan. EXPERIMENTAL RESEARCH ON CREEP OF CONCRETE FILLED STEEL TUBES UNDER ECCENTRIC COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 139-146. doi: 10.13204/j.gyjz201904300010

EXPERIMENTAL RESEARCH ON CREEP OF CONCRETE FILLED STEEL TUBES UNDER ECCENTRIC COMPRESSION

doi: 10.13204/j.gyjz201904300010
  • Received Date: 2020-01-06
  • Publish Date: 2020-11-23
  • Creep experiments of two groups of CFT eccentric compression members with eccentricity, concrete strength grade and loading age as parameters were carried out. Then 6 commonly used creep prediction models were compared and analyzed. The results from experiment indicated that with the increase of eccentricity, the maximum creep strain (near load side) of CFT eccentric compression members was larger, and the relationship between eccentricity and creep strain was basically linear. The higher the strength grade of concrete was, the smaller the maximum creep strain (near load side) of eccentrically compressed specimens was. Compared with C50 specimens, the creep strain of C40 specimens with loading age of 14 d increased by 12.2%, 26.0%, 21.7% and 23.7% respectively at 60 d, 120 d, 180 d and 240 d. The earlier the loading age was, the larger the maximum creep strain was. The creep strain of concrete with strength grade of C40 increased by 15.8%, 30.1%, 21.1% and 16.8% respectively on the 14th day compared with that on the 28th day at 60 d, 120 d, 180 d and 240 d. Analytical results indicated that the prediction accuracy of fib MC2010 model, ACI 209R-92 model and CEB-FIP MC90 model was better than that of other prediction models. The prediction accuracy of fib MC2010 model was the best one, the average and standard deviation were 0.992 and 0.282, respectively. The second was ACI 209R-92 model, the two values were 1.102 and 0.381, respectively. The third one was CEB-FIP MC90 model, the two values were 1.167 and 0.327, respectively. According to the results of this paper, it was suggested that, the partial safe prediction model of creep final value could be used for creep calculation of CFT eccentric compression members in the structural design.
  • 王元丰. 钢管混凝土徐变理论[M]. 北京:科学出版社, 2013.
    陈宝春. 钢管混凝土拱桥[M]. 3版.北京:人民交通出版社, 2016.
    韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社, 2007.
    谭素杰,齐加连.长期荷载对钢管混凝土受压构件强度影响的实验研究[J].哈尔滨建筑工程学院学报,1987(2):10-24.
    李博,顾安邦.偏心受压状态下钢管混凝土结构徐变分析[J].公路交通科技(应用技术版),2008(3):114-119.
    郭薇薇,王元丰,韩冰. 钢管混凝土大偏心受压构件的徐变分析[J]. 工程力学, 2003,20(1):91-95.
    韩冰,王元丰.钢管混凝土小偏心受压构件的徐变分析[J].工程力学, 2001, 18(6):110-116.
    谢肖礼,秦荣,谢开仲.徐变对钢管混凝土拱桥拱肋截面应力重分布的影响[J].广西科学,2001, 8(1):22-25.
    惠容炎, 黄国兴, 易冰若.混凝土的徐变[M].北京:中国铁道出版社, 1988.
    BAZANT Z P, ROBERT L. Mathematical Modeling of Creep and Shrinkage of Concrete[M]. Chichester:Wiley Press, 1998.
    ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures[R]. Detroit:ACI, 1992.
    孙宝俊.混凝土徐变理论的有效模量法[J].土木工程学报,1993(3):66-68.
    CEB-FIP. Model Code for Concrete Structures:CEB-FIP MC78[S]. Paris:Comitë Euro International du Beton, 1978.
    CEB-FIP. CEB-FIP Model Code 90:CEB-FIP MC90[S]. London:T. Telford, 1993.
    Fédération International du Béton (Fib). Model Code for Concrete Structures 2010:CEB-FIP MC90[S]. Lausanne:Switzer-land, International Federation for Structure Concrete, 2013.
    AASHTO. United States Code for Design of Highway Bridges[S]. Washington D C:AASHTO, 1994.
    BAZANT Z P, HUBLER M H, WENDNER R.RILEM Draft Recommendation:TC-242-MDC Multi-Decade Creep and Shrinkage of Concrete:Material Model and Structural Analysis[J].Materials & Structures,2015, 48(4):753-770.
  • Relative Articles

    [1]ZHOU Xuhong, LUO Yintao, WANG Wenling, WANG Yuhang, LU Yao. Optimizational Analysis on Structural Parameters and Study on Practical Deformation Analysis Methods for High-Rise Pile Cap Foundations of Offshore Wind Turbines[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 1-12. doi: 10.13204/j.gyjzG23022210
    [2]PENG Lingyun, LIU Wen, SUN Rui. The Dynamic Model of Distribution Parameters for a Frame Structure by Base Isolation and the Regularity of Earthquake Responses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 52-58,168. doi: 10.13204/j.gyjzG21031704
    [3]XIONG Ye, DING Yang, CHA Lyuying, CHEN Zizi, LIU Yangwu. Dynamic Characteristics of Axial Flow Compressor Foundations Considering Interaction of Foundation, Pile Foundations and Superstructures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 150-155,149. doi: 10.13204/j.gyjzG21052007
    [4]LI Shu'an, ZHANG Junhua, TIAN Shizhen, WU Jianqun, CHANG Jingcheng, WANG Yukui. RESEARCH ON BEARING CHARACTERISTICS OF GROUP PILE FOUNDATIONS CONSIDERING PILE-SOIL-CAP INTERACTION IN STRATIFIED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 65-71. doi: 10.13204/j.gyjzG201908210002
    [5]LüFanren, Shao Hongcai, Jin Yaohua. EXPERIMENTAL STUDY ON BEARING CAPACITY COMPARISON BETWEEN SYMMETRIC DOUBLE GROUP PILES UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(5): 102-105. doi: 10.13204/j.gyjz2011205019
    [6]Nie Weidong, Lu Jianfei. INFLUENCE OF DIFFERENT COMPATIBILITY CONDITIONS BETWEEN PILE AND SOIL ON DYNAMIC RESPONSE OF A SINGLE PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 55-59. doi: 10.13204/j.gyjz200708015
    [7]Cao Ming, Chen Longzhu, Chen Shengli, Zheng Jianguo. AN INTEGRAL EQUATION APPROACH AND PARAMETRIC ANALYSIS OF A FOUNDATION WITH LONG-SHORT-PILE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 48-52. doi: 10.13204/j.gyjz200705013
    [8]Zheng Gang, Zhang Hui-dong, Liu Shuang-ju. ANALYSIS OF INTERACTION OF PILES AND SOIL ABOUT PILED CAP (FOUNDATION) WITH DIFFERENT CONNECTION BETWEEN PILE TOP AND CAP (FOUNDATION)[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 65-69,5. doi: 10.13204/j.gyjz200606019
    [9]Chen Mingzhong, Zhou Chenghui. ANALYSIS OF OPTIMUM DESIGN FOR PILED RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 36-39. doi: 10.13204/j.gyjz200407010
  • Cited by

    Periodical cited type(6)

    1. 户梦瑶,吉云鹏,胡红松,高毅超. 环向均匀脱空对方钢管混凝土柱轴压受力性能的影响. 实验力学. 2025(01): 80-90 .
    2. 董军,葛世超,李国华,向学建,刘殿元. 核心砼缺陷位置对钢管混凝土承载力致损机制研究. 兰州理工大学学报. 2024(06): 107-112 .
    3. 王红. 基于正交试验设计的带缺陷钢管混凝土轴压承载力分析. 施工技术(中英文). 2023(04): 111-116 .
    4. 杨世胜,高岳,周继波. 填充材料对受拉弦杆构件的极限性能影响分析. 科技创新与应用. 2023(34): 70-76 .
    5. 刘龙刚,杨瑞娟. 基于有限元分析的受压构件计算与验证. 自动化与仪器仪表. 2022(10): 9-13+17 .
    6. 杨磊,薛晓宏,姜继果,黄正业,姜子麒. 矩形钢管混凝土柱初始缺陷随机有限元分析. 施工技术(中英文). 2022(22): 103-108+112 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 85.1 %META: 85.1 %PDF: 6.8 %PDF: 6.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %六安: 2.7 %六安: 2.7 %北京: 13.5 %北京: 13.5 %太原: 1.4 %太原: 1.4 %广州: 2.7 %广州: 2.7 %恩施土家族苗族自治州: 1.4 %恩施土家族苗族自治州: 1.4 %晋城: 1.4 %晋城: 1.4 %朝阳: 1.4 %朝阳: 1.4 %杭州: 1.4 %杭州: 1.4 %石家庄: 4.1 %石家庄: 4.1 %芒廷维尤: 23.0 %芒廷维尤: 23.0 %芝加哥: 1.4 %芝加哥: 1.4 %衢州: 1.4 %衢州: 1.4 %西宁: 6.8 %西宁: 6.8 %西安: 1.4 %西安: 1.4 %贵阳: 2.7 %贵阳: 2.7 %运城: 14.9 %运城: 14.9 %邯郸: 1.4 %邯郸: 1.4 %郑州: 2.7 %郑州: 2.7 %重庆: 1.4 %重庆: 1.4 %长沙: 1.4 %长沙: 1.4 %其他六安北京太原广州恩施土家族苗族自治州晋城朝阳杭州石家庄芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(1) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return