Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Han Zhiguang Cheng Xiaohui, . NUTRITIVE SALT'S IMPACT ON MICROORGANISM STRENGTHENING LIQUEFIABLE SANDY SOIL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 19-22. doi: 10.13204/j.gyjz201507004
Citation: Han Zhiguang Cheng Xiaohui, . NUTRITIVE SALT'S IMPACT ON MICROORGANISM STRENGTHENING LIQUEFIABLE SANDY SOIL[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 19-22. doi: 10.13204/j.gyjz201507004

NUTRITIVE SALT'S IMPACT ON MICROORGANISM STRENGTHENING LIQUEFIABLE SANDY SOIL

doi: 10.13204/j.gyjz201507004
  • Publish Date: 2015-07-20
  • Microbial induced calcium carbonate precipitation ( MICP) is a new in situ grouting technology. It can improve the flow characteristics of liquefiable sandy soil through microbial and calcium salt reaction and become calcium carbonate precipitation. Ammonium ( NH4 + ) ,as an important factor of characterizing CaCO3 crystallizing process,can fully reflect the effect of treatment on liquefiable sand. In this paper,aerobic Sporosarcina pasteurii was used,the mixed solution ( urea and three calcium salts solution) was selected as bacteria solution and nutritive salt solution respectively,and NH4 + characterization on microbial solidification process was also studied. The results showed that changes of NH4 + concentration could characterize the effect of MICP on liquefiable sand improvement. Among Ca( CH3COO) 2 ,Ca ( NO3 ) 2 and CaCl2 solution,the former was the best. The amount of nutrient salt consumption also significantly improved the solidification effect of liquefied sand,which was verified by the estimated permeability of samples and ultrasonic experiments after solidification.
  • Relative Articles

    [1]LIN Wenbin, WANG Bin, GAO Yupeng, KE Jintao, CAO Shenggen, KONG Qiuping. Experimental Study on Disintegration of Strongly Weathered Granular Granite Cemented by MICP in the Seawater Environment[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 1-9. doi: 10.3724/j.gyjzG24031816
    [2]LI Chen-chen, ZHANG Wen-bin, ZHANG Pu, LI Chun-yue. Experimental Research on Chloride Penetration Resistance of Calcium Sulfate Whisker and Basalt Fiber Concrete[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 48-52,66. doi: 10.13204/j.gyjzg21112207
    [3]QIAO Hongxia, YANG An, YANG Bo, LI Yuanke, DU Hangwei. Research on Life Prediction of Nano-CaCO3 Modified Concrete Based on Weibull Distribution[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 174-179. doi: 10.13204/j.gyjzG21032911
    [4]WANG Bukang, JIA Cangqin, WANG Guihe, ZHANG Haonan. Study on Cementation Effect of Tailing Sand by Magnesium Oxide Combined with Microorganism or by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 79-83. doi: 10.13204/j.gyjzG21022609
    [5]WANG Lei, WANG Bo, LIU Zhiqiang, CHANG Xinhao. Advances of Soil Cemented by Enzyme Induced Calcium Carbonate Precipitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 57-66. doi: 10.13204/j.gyjzG22061503
    [6]LIU Zhong, XIAO Shuiming, LIU Feifei, LONG Wenliang, ZHANG Minxia. Experimental Study on Influence Factors of Anti-Wind Erosion and Anti-Dust for Construction Debris Cemented by MICP[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 71-78. doi: 10.13204/j.gyjzG22070609
    [7]ZHANG Jianwei, HAN Yi, BIAN Hanliang, HUANG Xiaoshan, WANG Xiaoju, LI Beibei. EXPERIMENTAL RESEARCH ON WIND RESISTANCE OF SILTY SOIL CEMENTED BY SOYBEAN UREASE INDUCED CALCIUM CARBONATE PRECIPITATION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 19-24,118. doi: 10.13204/j.gyjzG20021404
    [8]WANG Yanxing, LI Chi, GAO Liping, QIN Xiao. DETERMINATION ON PORE STRUCTURE OF MICROBIAL INDUCED MINERALIZATION MATERIALS IN SALT ENVIRONMENT BY NMR[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 1-7. doi: 10.13204/j.gyjzG19092502
    [15]Zhang Hechao, Guo Hongxian, Li Meng, Cheng Xiaohui. EXPERIMENTAL RESEARCH OF MICROBIAL-INDUCED CLOGGING IN SANDS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 139-142. doi: 10.13204/j.gyjz201501028
    [16]Zhang Shuai Cheng Xiaohui, . NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON STABILIZATION OF LIQUEFIABLE SAND FOUNDATION BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 23-27. doi: 10.13204/j.gyjz201507005
    [17]Guo Hongxian Zhang Yue Cheng Xiaohui Ma Ruinan, . CRACK REPAIR AND SURFACE DEPOSITION OF CEMENT-BASED MATERIALS BY MICP TECHNOLOGY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 36-41. doi: 10.13204/j.gyjz201507008
    [18]Zhang Yue, Guo Hongxian, Cheng Xiaohui, Li Meng. FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 138-143. doi: 10.13204/j.gyjz201312026
  • Cited by

    Periodical cited type(22)

    1. 齐雨蒙,汪文昭,符平. MICP技术应用于岩体裂隙灌浆的现场试验研究. 水利与建筑工程学报. 2024(04): 127-133 .
    2. 邵光辉,陈海涛,侯敏,黄容聘,刘鹏. 微生物注浆固化粉土矿化反应的沿程变化特性. 岩土工程学报. 2023(01): 206-212 .
    3. 费雅洁,康博,孙献国,查甫生. 酸雨淋溶下MICP固化铅污染土的淋滤特性研究. 工程地质学报. 2023(02): 379-385 .
    4. 周一君,王硕,王洪涛. MICP固化风积沙的波速试验测试. 华北理工大学学报(自然科学版). 2023(03): 42-49 .
    5. 张建伟,李贝贝,边汉亮,韩一,王小锯. 钙源对酶诱导碳酸钙沉淀影响的试验研究. 应用基础与工程科学学报. 2022(05): 1245-1255 .
    6. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 .
    7. 杨司盟,彭劼,温智力,刘志明,冷勐,许鹏旭. 浓缩海水作为钙源在微生物诱导碳酸钙加固砂土中的应用. 岩土力学. 2021(03): 746-754 .
    8. 侯福星,张文,赵媛,杨晓旭,胡坪伸,李彬. 微生物诱导碳酸钙沉淀消除砂土液化的研究进展. 科学技术与工程. 2021(23): 9664-9670 .
    9. 明道贵,邱明喜,殷立静,张家铭,朱纪康,周杨. 钙源对微生物固化风积沙效果影响的试验研究. 人民黄河. 2020(04): 85-88+111 .
    10. 梁仕华,曾伟华,龚星,陈俊涛,钟宙. 颗粒级配对微生物固化砂土力学性能的影响. 人民长江. 2020(02): 179-183 .
    11. 林胜强,雷学文,孟庆山,赵涵洋. 纤维掺量对MICP固化钙质砂动力特性的影响. 人民长江. 2020(07): 181-187 .
    12. 杨丰,何稼,亓永帅,汤昕怡. 大豆脲酶基本特性与粉质砂土的固化研究. 河南科学. 2019(01): 112-118 .
    13. 储方舟,吴静云,丁静鹄,周云东,何稼,杭磊. 生物水泥技术应用于液化地基处理的研究进展. 水利与建筑工程学报. 2019(02): 91-96 .
    14. 梁仕华,房采杏,牛九格,曾伟华. 钙源对微生物固化花岗岩残积土效果影响的研究. 工业建筑. 2019(07): 102-107 . 本站查看
    15. 支永艳,邓华锋,肖瑶,段玲玲,蔡佳,李建林. 微生物灌浆加固裂隙岩体的渗流特性分析. 岩土力学. 2019(S1): 237-244 .
    16. 王绪民,崔芮,王铖. 微生物诱导CaCO_3沉淀胶结砂室内试验研究进展. 人民长江. 2019(09): 153-160 .
    17. 梁仕华,牛九格,房采杏,戴君. 微生物固化砂土的研究进展. 工业建筑. 2018(07): 1-9+15 . 本站查看
    18. 梁仕华,牛九格,房采杏,罗庆姿,尹应梅. 钙源对微生物沉积碳酸钙固化砂土的试验研究. 工业建筑. 2018(07): 10-15 . 本站查看
    19. 梁仕华,牛九格,戴君,罗思明,刘勇健,尹应梅. 循环灌浆次数对微生物固化砂土效果的影响. 工业建筑. 2018(07): 22-26 . 本站查看
    20. 梁仕华,牛九格,戴君,房采杏,罗庆姿,尹应梅. 碳源对微生物固化砂土效果影响的试验研究. 工业建筑. 2018(07): 16-21 . 本站查看
    21. 梁仕华,牛九格,房采杏,戴君,尹应梅,刘勇健. 营养液钙源对微生物固化砂土效果影响的试验研究. 防灾减灾工程学报. 2018(05): 781-786 .
    22. 陈彦瑞,雷学文,孟庆山,龚志伟,徐建平. 自源型铁细菌固化玄武岩残积土的室内试验研究. 工业建筑. 2017(09): 95-100 . 本站查看

    Other cited types(37)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 88.8 %META: 88.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.2 %其他: 11.2 %China: 5.6 %China: 5.6 %上海: 3.4 %上海: 3.4 %东莞: 1.1 %东莞: 1.1 %北京: 15.7 %北京: 15.7 %南京: 1.1 %南京: 1.1 %台州: 1.1 %台州: 1.1 %圣克拉拉: 2.2 %圣克拉拉: 2.2 %广州: 2.2 %广州: 2.2 %张家口: 2.2 %张家口: 2.2 %扬州: 1.1 %扬州: 1.1 %新乡: 4.5 %新乡: 4.5 %无锡: 2.2 %无锡: 2.2 %深圳: 2.2 %深圳: 2.2 %漯河: 2.2 %漯河: 2.2 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %芝加哥: 1.1 %芝加哥: 1.1 %衢州: 1.1 %衢州: 1.1 %西宁: 16.9 %西宁: 16.9 %郑州: 3.4 %郑州: 3.4 %鄂州: 1.1 %鄂州: 1.1 %重庆: 1.1 %重庆: 1.1 %镇江: 1.1 %镇江: 1.1 %其他China上海东莞北京南京台州圣克拉拉广州张家口扬州新乡无锡深圳漯河芒廷维尤芝加哥衢州西宁郑州鄂州重庆镇江

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(203) Cited by(59)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return