Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Cui Zizhi, Yang Ningning, Qi Hua. DISCUSSION ON SELF-WEIGHT COLLAPSE COEFFICIENT OF LOESS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 113-116. doi: 10.13204/j.gyjz201504021
Citation: Cui Zizhi, Yang Ningning, Qi Hua. DISCUSSION ON SELF-WEIGHT COLLAPSE COEFFICIENT OF LOESS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 113-116. doi: 10.13204/j.gyjz201504021

DISCUSSION ON SELF-WEIGHT COLLAPSE COEFFICIENT OF LOESS

doi: 10.13204/j.gyjz201504021
  • Publish Date: 2015-04-20
  • There is a great difference between the calculated collapse under overburden pressure and the measured collapse,it is one of the main reasons for the difference that the method indoor for determining coefficient of collapsibility under overburden pressure has theory deficiency,it has become an urgent requirement how to correctly evaluate loess foundation improving the theory and method for determining coefficient of collapsibility under overburden pressure. An improved method for determining coefficient of collapsibility under overburden pressure was established in the literature No. 10,based on which taking dry density,moisture content,interparticle force and natural weight pressure as factors,the problems of determining coefficient of collapsibility under overburden earth pressure were studied by experiment. The rationality of the improved method was analyzed,and the influencing rule of each factor on the difference between the two determination results was explored by comparison of Rc and 0 ,Rc was the ratio of coefficient of collapsibility under overburden pressure determined by the improved method and current method,0 was the correction coefficient varied with the soil.Research showed that the overburden pressure,dry density,water content and interpartical force had different effects on Rc ,dry density was the most important factor, water content and overberden pressure were the less ones,and the interpartical force was the minimum. The improved method had general applicability and theoretic rationality,which could reduce the effects of soil disturbance on coefficient of self-weight collapsibility.
  • Relative Articles

    [1]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [2]SU Hang, WANG Jingfeng, DING Shihong, LI Jingzhe, YI Zhonglou. RESEARCH ON MULTI-POINT ASYMMETRIC OVERALL LIFTING TECHNIQUE FOR LONG-SPAN SPACE SPECIAL-SHAPED CURVED STEEL TRUSS STRUCTURE BASED ON CLOUD MONITORING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 105-115. doi: 10.13204/j.gyjzG19120404
    [3]HUANG Xin, LI Yi, ZHU Xudong, HU Xueying, LYU Yang. DAMAGE ANALYSIS OF HIGH-RISE BUILDING STRUCTURES WITH ASYMMETRIC VERTICAL SETBACKS UNDER RARE EARTHQUAKE ACTION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 79-84. doi: 10.13204/j.gyjz202006013
    [8]Zhang Henian, Long Gang, Chen Kaixiang, Wu Jinjin. ANALYSIS OF BEARING CHARACTERISTICS AND PILE GROUP EFFECT OF PHC PIPE PILE UNDER THE ACTION OF HORIZONTAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 110-115. doi: 10.13204/j.gyjz201508020
    [9]Liang Peixin, Guo Zhengxing. STUDY ON SEISMIC BEHAVIOR MODELING AND KEY PARAMETERS OF THE UNSYMMETRICAL HYBRID CONNECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 21-25,132. doi: 10.13204/j.gyjz201104005
    [10]Zhao Liping, Xiang Li, Lu Chen, Han Shilin. ANALYSIS OF BEARING LOAD CHARACTERISTIC OF SQUEEZED BRANCH AND PLATE PILE GROUP FOUNDATION UNDER LATERAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 52-56. doi: 10.13204/j.gyjz200910014
    [11]Yang Tao, Li Guo-wei. NUMERICAL ANALYSIS OF CONSOLIDATION BEHAVIOR OF COMPOSITE GROUNDWITH UNDRAINED PILES UNDER EMBANKMENT[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 61-63,93. doi: 10.13204/j.gyjz200711016
    [12]Nie Rusong, Leng Wuming, Deng Zongwei, Zhao Jian. 3D FINITE ELEMENT RESEARCH ON SOIL ARCHING EFFECT BETWEEN THE PASSIVE SQUARE PILES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 47-52. doi: 10.13204/j.gyjz200707015
    [13]Liu Qijian, Yang Linde. ANALYSIS OF VERTICAL BEARING CAPACITY AND DISPLACEMENT BY THE SETTLEMENT OF PILE TOP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 35-37. doi: 10.13204/j.gyjz200503014
  • Cited by

    Periodical cited type(15)

    1. 卫佩行,郭雯祯,赵明静,郭振胜,王建和. 玄武岩纤维包裹胶合木圆柱的轴压性能(英文). 林业工程学报. 2024(05): 67-74 .
    2. 谢亚孜,陈伯望,刘哲,王柳,邓谋韬. 侧压竹集成材柱轴心受压试验研究. 土木与环境工程学报(中英文). 2023(04): 146-153 .
    3. 赵卫锋,罗宗健,周靖,黎亚军,补国斌. 竹胶板-薄壁钢管约束收尘石粉混凝土组合柱轴压性能. 应用力学学报. 2022(01): 137-147 .
    4. 李德月,韩善宇,陈复明,王戈. 梁柱用竹质工程材料及其构件研究进展. 世界林业研究. 2022(04): 53-58 .
    5. 冯涯钦,王雪,余肖红. 工程竹材力学性能和节点连接性能研究进展. 竹子学报. 2022(04): 10-18 .
    6. 范云蕾,苏杰,彭鹏,俞辰霄,张灵君,肖岩. 正交胶合竹木柱轴心受压试验研究. 土木工程学报. 2021(03): 68-76 .
    7. 徐正明,罗兆辉,高占远,吴奎,张世杰. 结构设计竞赛竹材的轴心抗压性能研究. 天津城建大学学报. 2020(03): 173-177 .
    8. 田黎敏,靳贝贝,郝际平. 现代竹结构的研究与工程应用. 工程力学. 2019(05): 1-18+27 .
    9. 刁倩倩,杨利梅,宋光喃,孙正军,刘焕荣,张秀标. 密度分级规格竹条制备的竹层板性能. 东北林业大学学报. 2018(02): 49-52+58 .
    10. 李玉顺,张家亮,童科挺,郭军,邬沛. 钢-竹组合工字形梁界面滑移及变形分析. 工程力学. 2018(07): 150-158+166 .
    11. 冷予冰,许清风,陈玲珠. 工程竹在建筑结构中的应用研究进展. 建筑结构. 2018(10): 89-97 .
    12. 赵卫锋,唐凯,龙志林. 薄壁型钢管/胶合竹板复合柱抗震性能试验. 地震工程学报. 2018(03): 450-457 .
    13. 刘常浩,李昂,徐明. 胶合竹柱偏心受压试验研究. 特种结构. 2018(06): 41-45+118 .
    14. 张彬,傅万四,周建波,闫薇. 基于仿生竹材原态多方重组材的轴心抗压性能研究. 木材加工机械. 2017(02): 27-31 .
    15. 张秀华,鄂婧,李玉顺,张懿婷. 重组竹抗压和抗弯力学性能试验研究. 工业建筑. 2016(01): 7-12 . 本站查看

    Other cited types(26)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.3 %FULLTEXT: 21.3 %META: 78.7 %META: 78.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.4 %其他: 23.4 %China: 2.1 %China: 2.1 %北京: 6.4 %北京: 6.4 %嘉兴: 2.1 %嘉兴: 2.1 %张家口: 6.4 %张家口: 6.4 %湖州: 2.1 %湖州: 2.1 %芒廷维尤: 36.2 %芒廷维尤: 36.2 %芝加哥: 2.1 %芝加哥: 2.1 %西宁: 17.0 %西宁: 17.0 %重庆: 2.1 %重庆: 2.1 %其他China北京嘉兴张家口湖州芒廷维尤芝加哥西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(67) Cited by(41)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return