Shan Bo, Xiao Yan, Chen Jie. EXPERMENTAL RESEARCH OF GLUBAM AFTER ARTIFICIAL ACCELERATED AGING[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 26-32. doi: 10.13204/j.gyjz201504005
Citation:
Shan Bo, Xiao Yan, Chen Jie. EXPERMENTAL RESEARCH OF GLUBAM AFTER ARTIFICIAL ACCELERATED AGING[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(4): 26-32. doi: 10.13204/j.gyjz201504005
Shan Bo, Xiao Yan, Chen Jie. EXPERMENTAL RESEARCH OF GLUBAM AFTER ARTIFICIAL ACCELERATED AGING[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 26-32. doi: 10.13204/j.gyjz201504005
Citation:
Shan Bo, Xiao Yan, Chen Jie. EXPERMENTAL RESEARCH OF GLUBAM AFTER ARTIFICIAL ACCELERATED AGING[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(4): 26-32. doi: 10.13204/j.gyjz201504005
EXPERMENTAL RESEARCH OF GLUBAM AFTER ARTIFICIAL ACCELERATED AGING
Abstract
GluBam is a new kind of environmentally friendly and energy efficient composite material in civil engineering developed in recent years. But the mechanical performance after subjected aging under the outdoor conditions is a blank of research. In this paper,a new artificial accelerated aging test method and equipment for GluBam were presented . The basic material performance,including deformation changing,tensile properties, compressive properties,bending properties and internal bonding strength were tested according to the different equivalent aging duration. The failure mode of specimens showed that delamination of GluBam caused by dry-wet cycle was the main reason for mechanical properties degradation. All test results present monotone decreasing trend and the internal bonding strength was the most sensitive to aging duration. Aging influence factor ,internal bonding strength correlation coefficient and thickness deformation correlation coefficient can be used to evaluate aging performance of GluBam,but the accuracy of evaluation results need further research. GluBam exposed to the dry wet cycle condition needs necessary waterproof measures ,which should be specially investigated further.
References
Relative Articles
[1] ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
[2] SU Hang, WANG Jingfeng, DING Shihong, LI Jingzhe, YI Zhonglou. RESEARCH ON MULTI-POINT ASYMMETRIC OVERALL LIFTING TECHNIQUE FOR LONG-SPAN SPACE SPECIAL-SHAPED CURVED STEEL TRUSS STRUCTURE BASED ON CLOUD MONITORING [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 105-115. doi: 10.13204/j.gyjzG19120404
[3] HUANG Xin, LI Yi, ZHU Xudong, HU Xueying, LYU Yang. DAMAGE ANALYSIS OF HIGH-RISE BUILDING STRUCTURES WITH ASYMMETRIC VERTICAL SETBACKS UNDER RARE EARTHQUAKE ACTION [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 79-84. doi: 10.13204/j.gyjz202006013
[8] Zhang Henian, Long Gang, Chen Kaixiang, Wu Jinjin. ANALYSIS OF BEARING CHARACTERISTICS AND PILE GROUP EFFECT OF PHC PIPE PILE UNDER THE ACTION OF HORIZONTAL LOAD [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 110-115. doi: 10.13204/j.gyjz201508020
[9] Liang Peixin, Guo Zhengxing. STUDY ON SEISMIC BEHAVIOR MODELING AND KEY PARAMETERS OF THE UNSYMMETRICAL HYBRID CONNECTIONS [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 21-25,132. doi: 10.13204/j.gyjz201104005
[10] Zhao Liping, Xiang Li, Lu Chen, Han Shilin. ANALYSIS OF BEARING LOAD CHARACTERISTIC OF SQUEEZED BRANCH AND PLATE PILE GROUP FOUNDATION UNDER LATERAL LOAD [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(10): 52-56. doi: 10.13204/j.gyjz200910014
[11] Yang Tao, Li Guo-wei. NUMERICAL ANALYSIS OF CONSOLIDATION BEHAVIOR OF COMPOSITE GROUNDWITH UNDRAINED PILES UNDER EMBANKMENT [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 61-63,93. doi: 10.13204/j.gyjz200711016
[12] Nie Rusong, Leng Wuming, Deng Zongwei, Zhao Jian. 3D FINITE ELEMENT RESEARCH ON SOIL ARCHING EFFECT BETWEEN THE PASSIVE SQUARE PILES [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(7): 47-52. doi: 10.13204/j.gyjz200707015
[13] Liu Qijian, Yang Linde. ANALYSIS OF VERTICAL BEARING CAPACITY AND DISPLACEMENT BY THE SETTLEMENT OF PILE TOP [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 35-37. doi: 10.13204/j.gyjz200503014
Cited by Periodical cited type(15) 1. 卫佩行,郭雯祯,赵明静,郭振胜,王建和. 玄武岩纤维包裹胶合木圆柱的轴压性能(英文). 林业工程学报. 2024(05): 67-74 . 2. 谢亚孜,陈伯望,刘哲,王柳,邓谋韬. 侧压竹集成材柱轴心受压试验研究. 土木与环境工程学报(中英文). 2023(04): 146-153 . 3. 赵卫锋,罗宗健,周靖,黎亚军,补国斌. 竹胶板-薄壁钢管约束收尘石粉混凝土组合柱轴压性能. 应用力学学报. 2022(01): 137-147 . 4. 李德月,韩善宇,陈复明,王戈. 梁柱用竹质工程材料及其构件研究进展. 世界林业研究. 2022(04): 53-58 . 5. 冯涯钦,王雪,余肖红. 工程竹材力学性能和节点连接性能研究进展. 竹子学报. 2022(04): 10-18 . 6. 范云蕾,苏杰,彭鹏,俞辰霄,张灵君,肖岩. 正交胶合竹木柱轴心受压试验研究. 土木工程学报. 2021(03): 68-76 . 7. 徐正明,罗兆辉,高占远,吴奎,张世杰. 结构设计竞赛竹材的轴心抗压性能研究. 天津城建大学学报. 2020(03): 173-177 . 8. 田黎敏,靳贝贝,郝际平. 现代竹结构的研究与工程应用. 工程力学. 2019(05): 1-18+27 . 9. 刁倩倩,杨利梅,宋光喃,孙正军,刘焕荣,张秀标. 密度分级规格竹条制备的竹层板性能. 东北林业大学学报. 2018(02): 49-52+58 . 10. 李玉顺,张家亮,童科挺,郭军,邬沛. 钢-竹组合工字形梁界面滑移及变形分析. 工程力学. 2018(07): 150-158+166 . 11. 冷予冰,许清风,陈玲珠. 工程竹在建筑结构中的应用研究进展. 建筑结构. 2018(10): 89-97 . 12. 赵卫锋,唐凯,龙志林. 薄壁型钢管/胶合竹板复合柱抗震性能试验. 地震工程学报. 2018(03): 450-457 . 13. 刘常浩,李昂,徐明. 胶合竹柱偏心受压试验研究. 特种结构. 2018(06): 41-45+118 . 14. 张彬,傅万四,周建波,闫薇. 基于仿生竹材原态多方重组材的轴心抗压性能研究. 木材加工机械. 2017(02): 27-31 . 15. 张秀华,鄂婧,李玉顺,张懿婷. 重组竹抗压和抗弯力学性能试验研究. 工业建筑. 2016(01): 7-12 . 本站查看
Other cited types(26)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 21.3 % FULLTEXT : 21.3 % META : 78.7 % META : 78.7 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 23.4 % 其他 : 23.4 % China : 2.1 % China : 2.1 % 北京 : 6.4 % 北京 : 6.4 % 嘉兴 : 2.1 % 嘉兴 : 2.1 % 张家口 : 6.4 % 张家口 : 6.4 % 湖州 : 2.1 % 湖州 : 2.1 % 芒廷维尤 : 36.2 % 芒廷维尤 : 36.2 % 芝加哥 : 2.1 % 芝加哥 : 2.1 % 西宁 : 17.0 % 西宁 : 17.0 % 重庆 : 2.1 % 重庆 : 2.1 % 其他 China 北京 嘉兴 张家口 湖州 芒廷维尤 芝加哥 西宁 重庆