Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Cheng Donghui, Jia Ying, Xing Jianbing. EXPERIMENT AND ANALYSIS OF PLASTIC PERFORMANCE OF PARTIALLY PRESTRESSED CONCRETE CONTINUOUS BEAMS WITH CFRP TENDON[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 37-43. doi: 10.13204/j.gyjz201003011
Citation: Zhang Yue, Guo Hongxian, Cheng Xiaohui, Li Meng. FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 138-143. doi: 10.13204/j.gyjz201312026

FIELD EXPERIMENT OF MICROBIAL INDUCED CARBONATE PRECIPITATION TECHNOLOGY IN LEAKAGE TREATMENT OF A BASEMENT

doi: 10.13204/j.gyjz201312026
  • Received Date: 2013-07-01
  • Publish Date: 2013-12-20
  • Microbial induced carbonate precipitation (MICP),which use microbial catalyzed hydrolysis of urea and to produce calcium carbonate crystals,is tested to treat the leakage of basement external wall in Jinan. S. pasteurii and reactant are injected into the backfill of the crack wall in the upstream face in-situ. After grouting,the results of permeability field test,ultrasonic measurement,ground penetrating radar detection,concrete coring observation, XRD analysis and SEM analysis show that a CaCO 3 layer forms in the backstream face of the cracked wall and cover the surface of the crack after four months,there is no water leakage in the basement when subjected to raining; the treated soil becomes denser and more uniform; there is lots of CaCO 3 precipitation in the crack and the filling effect is more obvious in the lower part of the cracked wall. The MICP technology provides a new solution to repair the concrete cracks and control the leakage of underground structures.
  • 张可本, 薛绍祖.上海地铁 1 号线地下结构渗漏水现状和治理[J].工业建筑, 1995, 25(9):45-49.
    [2] Mitchell A C,Ferris F G.The Coprecipitation of Sr into CalcitePrecipitates Induced by Bacterial Ureolysis in ArtificialGroundwater: Temperature and Kinetic Dependence [J].Geochimica et Cosmochimica Acta, 2005, 69(17): 4199-4210.
    [3] Fujita Y,Taylor J L.Evaluating the Potential of Native UreolyticMicrobes to Remediate a 90Sr Contaminated Environment[J].Environ.Sci.Technol, 2010, 44:7652-7658.
    [4] De Muynck W,De Belie N,Verstraete W.Microbial CarbonatePrecipitation in Construction Materials: a Review[J].EcologicalEngineering, 2009, 36:118-136.
    [5] Whiffin V S,Van Paassen L A,Harkes M P.Microbial CarbonatePrecipitation as a Soil Improvement Technique[J].Geomicrobiol,2007, 24:417-423.
    [6] DeJong J T,Mortensen B M,Martinez B C,et al.Bio-MediatedSoil Improvement[J].Ecological Engineering,2010,36:197-210.
    [7] Gollapudi U K,Knutson C L,Bang S S, et al.A New Method forControlling Leaching Through Permeable Channels [J].Chemosphere, 1995, 30(4): 695-705.
    [8] Ferris F,Stehmeier L,Kantzas A,et al.Bacteriogenic MineralPlugging[J].Journal of Canadian Petroleum Technology,1996,35(8): 56-61.
    [9] Chu J,Stabnikov V,Ivanov V.Microbially Induced CalciumCarbonate Precipitation on Surface or in the Bulk of Soil [J].Geomicrobiology Journal, 2012, 29(6): 544-549.
    [10] Nemati M, Voordouw G.Modification of Porous MediaPermeability,Using Calcium Carbonate Produced Enzymatically inSitu[J].Enzyme Microb Technol, 2003, 33:635-642.
    [11] Ramakrishnan V,Ramesh K P,Bang S S.Bacterial Concrete[C]//Proceedings of SPIE, 4234, Smart Materials, Melbourne:2001: 168-176.
    [12] Bang S S,Ramakrishnan V.Microbiologically Enhanced CrackRemediation ( MECR) [C]//Proceedings of the InternationalSymposium on Industrial Application of Microbial Genomes.Daegu,Korea: 2001: 3-13.
    [13] Day J L,Ramakrishnan V,Bang S S.Microbiologically InducedSealant for Concrete Crack Remediation [C]//Proceedings of the16th Engineering Mechanics Conference.Seattle, WA: 2003: 1-8.
    [14] Bang S S,Lippertm J J,Yerra U Mulukutla S,et al.MicrobialCalcite,a Bio-Based Smart Nanomaterial in Concrete Remediation[J].International Journal of Smart and Nano Materials.2005,(1): 28-39.
    [15] Ramakrishnan V,Panchalan R K,Bang S S.Improvement ofConcrete Durability by Bacterial Mineral Precipitation[C]//Proceedings of the 11th International Conference on Fracture.Turin,Italy: 2005.
    [16] De Belie N, De Muynck W.Crack Repair in Concrete UsingBiodeposition[C]//International Conference on Concrete Repair,Rehabilitation and Retrofitting.Cape Town,South Africa: 2008.
    [17] Van Tittelboom K,De Belie N,De Muynck W,et al.Use ofBacteria to Repair Cracks in Concrete[J].Cement and ConcreteResearch, 2010, 40(1): 157-166.
    [18] De Muynck W,Cox K,De Belie N,et al.Bacterial CarbonatePrecipitation as an Alternative Surface Treatment for Concrete[J].Construction Building Material, 2008, 22 (5): 875-885.
    [19] 王瑞兴, 钱春香.微生物沉积碳酸钙修复水泥基材料表面缺陷[J].硅酸盐学报, 2008, 36(4): 457-464.
    [20] 王瑞兴, 钱春香, 王剑云, 等.水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J].硅酸盐学报, 2008, 36(10) : 137-138.
    [21] Whiffin V S.Microbial CaCO3 Precipitation for the Production ofBiocement[D].Perth: Murdoch University, 2004.
    [22] 李沛豪, 屈文俊.细菌诱导碳酸钙沉积修复混凝土裂缝 [J].土木工程学报, 2010, 43(11):64-70.
  • Relative Articles

    [1]HONG Yu, SHAO Yongjian, QI Mingtao. Research on Seismic Performance and Damage Analysis of Reinforced ECC Composite Torsional Columns[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 150-158. doi: 10.3724/j.gyjzG23051113
    [2]GUO Wei, ZHANG Yipeng, WAN Yufeng, CHEN An, SUN Jing. A State-of-the-Art Review of Research and Application of FRP Composites in Railway Infrastructure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 190-196. doi: 10.3724/j.gyjzG24040601
    [3]SHI Yi, YI Xiaohui, YOU Jianzhou, CHEN Jianfeng, JIN Jianle, CHEN Li, XU Xian. Analysis of New Prefabricated Composite Overhead Structure System and Its Design for Power Distribution Rooms of Substations[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 175-181. doi: 10.13204/j.gyjzG22102513
    [4]YAO Zhongyong. Research on Mix Proportion of ECC with Low Drying Shrinkage[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 171-176,215. doi: 10.13204/j.gyjzG20110912
    [5]SUI Liang, SHAO Yongjian, LIANG Xiao, ZHOU Yifan, WANG Guozuo. EXPERIMENTAL AND ANALYTICAL RESEARCH ON SEISMIC BEHAVIOR OF ECC COLUMNS UNDER COMBINED TORSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 39-45. doi: 10.13204/j.gyjzG19122311
    [10]Wang Zhenshan, Liu Yunhe, Guo Hongchao, Ma Hui, Li Zhigang. STUDY OF FULL-SCALE TEST OF THE TENSILE BEHAVIOR OF FRP COMPOSITE BUSHING[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 16-21. doi: 10.13204/j.gyjz201506004
    [11]Zhou Chunli. ANALYSIS OF FLEXUAL BEARING CAPACITY OF PRESTRESSED NEW STEEL BOX CONCRETE COMPOSITE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 150-157. doi: 10.13204/j.gyjz201403030
    [12]Wang Ercheng, Shan Renliang, Wei Longfei, Cao Jianyang, Song Liwei. EXPERIMENTAL ANALYSIS OF QUASI DYNAMIC DAMAGE OF EARLY-AGE HIGH STRENGTH CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 110-113. doi: 10.13204/j.gyjz201403023
    [13]Gao Yifeng, Zhao Qilin, Ma Sen, Xu Longxing, Tao Jie. STUDIES ON CONNECTION MODES OF SANDWICH COMPOSITE T-JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 36-39. doi: 10.13204/j.gyjz201410008
    [14]Tao Jie, Zhao Qilin, Gao Yifeng, Xu Kang. PROCESSING TECHNOLOGY OF GFRP COMPOSITE FOAM SANDWICH TUBE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 78-82.
    [15]Sun Huiming, Fang Hai, Zhu Lu, Liu Weiqing, Xu Chao. EXPERIMENTAL AND THEORETICAL STUDY OF COMPOSITE SANDWICH COLUMN UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 59-63. doi: 10.13204/j.gyjz201402014
    [16]Hu Chunhong, Zhao Tiejun, Rong Tao. EXPERIMENTAL RESEARCH ON TENSILE PERFORMANCE OF STRAIN HARDENING CEMENTITIOUS COMPOSITES(SHCC)[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 102-106. doi: 10.13204/j.gyjz201203022
    [17]Jiang Ying-bo, Jiang Ke. TEST ANALYSIS OF THICKNESS DETECTION OF CONCRETE COVER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 68-69,100. doi: 10.13204/j.gyjz200604020
    [18]Fu Guang-yao. ANALYSIS OF THE STRESS AND DEFLECTION OF A MULTI-SPAN LIGHT GAUGE STEEL FLOORCONTINUOUS MAIN-BEAM WITH TESTING AND THEORETICAL METHODS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 85-87. doi: 10.13204/j.gyjz200604026
    [19]Shi Shaoqing, Liu Yingfang, Yin Ping, Zhang Xiangji. RESEARCH ON APPLICATION OF FIBER REINFORCED POLYMER COMPOSITE STRUCTURE FOR DEFENSE WORK[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 56-57,32. doi: 10.13204/j.gyjz200503020
    [20]Diao Bo, Zheng Xiaoning, Sun Yang. DESIGN AND MECHANICAL PROPERTY EXPERIMENTAL ANALYSIS OF MASONRY COLUMNS FOR STRUCTURAL EMERGENCY REINFORCING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(12): 37-39,71. doi: 10.13204/j.gyjz200512011
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.6 %FULLTEXT: 8.6 %META: 91.4 %META: 91.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.8 %其他: 7.8 %上海: 1.7 %上海: 1.7 %中山: 2.6 %中山: 2.6 %丽水: 0.9 %丽水: 0.9 %北京: 6.0 %北京: 6.0 %天津: 0.9 %天津: 0.9 %太原: 0.9 %太原: 0.9 %常德: 0.9 %常德: 0.9 %张家口: 3.4 %张家口: 3.4 %徐州: 0.9 %徐州: 0.9 %成都: 0.9 %成都: 0.9 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.9 %朝阳: 0.9 %杭州: 1.7 %杭州: 1.7 %沈阳: 0.9 %沈阳: 0.9 %温州: 0.9 %温州: 0.9 %湖州: 0.9 %湖州: 0.9 %漯河: 3.4 %漯河: 3.4 %石家庄: 1.7 %石家庄: 1.7 %芒廷维尤: 8.6 %芒廷维尤: 8.6 %芝加哥: 0.9 %芝加哥: 0.9 %衢州: 0.9 %衢州: 0.9 %西宁: 36.2 %西宁: 36.2 %西安: 0.9 %西安: 0.9 %贵阳: 1.7 %贵阳: 1.7 %运城: 9.5 %运城: 9.5 %邯郸: 0.9 %邯郸: 0.9 %郑州: 1.7 %郑州: 1.7 %重庆: 0.9 %重庆: 0.9 %其他上海中山丽水北京天津太原常德张家口徐州成都晋城朝阳杭州沈阳温州湖州漯河石家庄芒廷维尤芝加哥衢州西宁西安贵阳运城邯郸郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (152) PDF downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return